130 resultados para Circular Statistics
Resumo:
A method is developed by which the input leading to the highest possible response in an interval of time can be determined for a class of non-linear systems. The input, if deterministic, is constrained to have a known finite energy (or norm) in the interval under consideration. In the case of random inputs, the energy is constrained to have a known probability distribution function. The approach has applications when a system has to be put to maximum advantage by getting the largest possible output or when a system has to be designed to the highest maximum response with only the input energy or the energy distribution known. The method is also useful in arriving at a bound on the highest peak distribution of the response, when the excitation is a known random process.As an illustration the Duffing oscillator has been analysed and some numerical results have also been presented.
Resumo:
A parametric study was carried out to determine the Stress Intensity Factor (SIF) in a cracked circular ring by using the photoelastic technique. The stress intensity factors for mode I deformation were determined by subjecting the specimens to the tensile loading from inner boundary and through the holes. The results of Non-Dimensional Stress Intensity Factor (NDSIF) variation with non-dimensional crack length for both methods of loading are compared with each other and with published results.
Resumo:
The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.
Resumo:
A damage detection and imaging methodology based on symmetry of neighborhood sensor path and similarity of signal patterns with respect to radial paths in a circular array of sensors has been developed It uses information regarding Limb wave propagation along with a triangulation scheme to rapidly locate and quantify the severity of damage without using all of the sensor data. In a plate like structure, such a scheme can be effectively employed besides full field imaging of wave scattering pattern from the damage, if present in the plate. This new scheme is validated experimentally. Hole and corrosion type damages have been detected and quantified using the proposed scheme successfully. A wavelet based cumulative damage index has been studied which shows monotonic sensitivity against the severity of the damage. which is most desired in a Structural Health Monitoring system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A solution for the stresses and displacements in an radially infinite thick plate having a circular hole, one face of which resting on a smooth rigid bed and the other face subjected to axisymmetric normal loading is given. The solution is obtained in terms of Fourier-Bessel series and integral for the Love's stress function. Numerical results are presented for one particular ratio of thickness of plate to the hole radius and loading. It is also shown that the Poisson's ratio has a predominant effect on certain stresses and displacements. The solution would be useful in the stress analysis of bolted joints.Eine Lösung für die Spannungen und Verschiebungen in einer radial, unendlich ausgedehnten, dicken Platte mit einem kreisförmigen Loch, wobei eine Seite auf einer ebenen, starren Unterlage aufliegt, die andere Seite durch eine achsensymmetrische Vertikallast belastet ist, wird angegeben. Die Lösung wird in Form von Fourier-Bessel-Reihen und Integralen der Loveschen Spannungsfunktion angegeben. Numerische Ergebnisse werden für ein bestimmtes Verhältnis der Plattendicke zum Lochradius sowie zur Belastung angegeben. Es wird auch gezeigt, daß das Poisssonsche Verhältnis einen besonderen Einfluß auf bestimmte Spannungen und Verschiebungen hat. Die Lösung ist anwendbar für die Spannungsermittlung von Bolzenverbindungen.
Resumo:
Free vibration of circular plates of arbitrary thickness is investigated using the method of initial functions. State-space approach is used to derive the governing equations of the above method. The formulation is such that theories of any desired order can be obtained by deleting higher terms in the infinite-order differential equations. Numerical results are obtained for flexural and extensional vibration of circular plates. Results are also computed using Mindlin's theory and they are in agreement with the present analysis.
Resumo:
The effect of having an edge reinforcement around a circular elastic inclusion in a cylindrical shell is studied. The influence of various parameters of the reinforcement such as area of cross section and moment of inertia on the stress concentrations around the inclusion is investigated. It is found that for certain inclusion parameters it is possible to get an optimum reinforcement, which gives minimum stress concentration around the inclusion. The effect of moment of inertia of the reinforcement of SCF is found to be negligible. The results are plotted in a non-dimensional form and a comparison with flat plate results is made which show the curvature effect. In the limiting case of a rigid reinforcement the results tend to those of a rigid circular inclusion. Results are also presented for different values of μe the ratio of extensional rigidity of shell to that of the inclusion.
unsteady nonsimilar laminar compressible boundary-layer flow over a yawed infinite circular-cylinder
Resumo:
Active particles contain internal degrees of freedom with the ability to take in and dissipate energy and, in the process, execute systematic movement. Examples include all living organisms and their motile constituents such as molecular motors. This article reviews recent progress in applying the principles of nonequilibrium statistical mechanics and hydrodynamics to form a systematic theory of the behavior of collections of active particles-active matter-with only minimal regard to microscopic details. A unified view of the many kinds of active matter is presented, encompassing not only living systems but inanimate analogs. Theory and experiment are discussed side by side.