85 resultados para Characteristic Initial Value Problem
Resumo:
Clock synchronization in wireless sensor networks (WSNs) assures that sensor nodes have the same reference clock time. This is necessary not only for various WSN applications but also for many system level protocols for WSNs such as MAC protocols, and protocols for sleep scheduling of sensor nodes. Clock value of a node at a particular instant of time depends on its initial value and the frequency of the crystal oscillator used in the sensor node. The frequency of the crystal oscillator varies from node to node, and may also change over time depending upon many factors like temperature, humidity, etc. As a result, clock values of different sensor nodes diverge from each other and also from the real time clock, and hence, there is a requirement for clock synchronization in WSNs. Consequently, many clock synchronization protocols for WSNs have been proposed in the recent past. These protocols differ from each other considerably, and so, there is a need to understand them using a common platform. Towards this goal, this survey paper categorizes the features of clock synchronization protocols for WSNs into three types, viz, structural features, technical features, and global objective features. Each of these categories has different options to further segregate the features for better understanding. The features of clock synchronization protocols that have been used in this survey include all the features which have been used in existing surveys as well as new features such as how the clock value is propagated, when the clock value is propagated, and when the physical clock is updated, which are required for better understanding of the clock synchronization protocols in WSNs in a systematic way. This paper also gives a brief description of a few basic clock synchronization protocols for WSNs, and shows how these protocols fit into the above classification criteria. In addition, the recent clock synchronization protocols for WSNs, which are based on the above basic clock synchronization protocols, are also given alongside the corresponding basic clock synchronization protocols. Indeed, the proposed model for characterizing the clock synchronization protocols in WSNs can be used not only for analyzing the existing protocols but also for designing new clock synchronization protocols. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with a new approach to study the nonlinear inviscid flow over arbitrary bottom topography. The problem is formulated as a nonlinear boundary value problem which is reduced to a Dirichlet problem using certain transformations. The Dirichlet problem is solved by applying Plemelj-Sokhotski formulae and it is noticed that the solution of the Dirichlet problem depends on the solution of a coupled Fredholm integral equation of the second kind. These integral equations are solved numerically by using a modified method. The free-surface profile which is unknown at the outset is determined. Different kinds of bottom topographies are considered here to study the influence of bottom topography on the free-surface profile. The effects of the Froude number and the arbitrary bottom topography on the free-surface profile are demonstrated in graphical forms for the subcritical flow. Further, the nonlinear results are validated with the results available in the literature and compared with the results obtained by using linear theory. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
The K-means algorithm for clustering is very much dependent on the initial seed values. We use a genetic algorithm to find a near-optimal partitioning of the given data set by selecting proper initial seed values in the K-means algorithm. Results obtained are very encouraging and in most of the cases, on data sets having well separated clusters, the proposed scheme reached a global minimum.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
This article is concerned with subsurface material identification for the 2-D Helmholtz equation. The algorithm is iterative in nature. It assumes an initial guess for the unknown function and obtains corrections to the guessed value. It linearizes the otherwise nonlinear problem around the background field. The background field is the field variable generated using the guessed value of the unknown function at each iteration. Numerical results indicate that the algorithm can recover a close estimate of the unknown function based on the measurements collected at the boundary.
Resumo:
This paper proposes a novel application of differential evolution to solve a difficult dynamic optimisation or optimal control problem. The miss distance in a missile-target engagement is minimised using differential evolution. The difficulty of solving it by existing conventional techniques in optimal control theory is caused by the nonlinearity of the dynamic constraint equation, inequality constraint on the control input and inequality constraint on another parameter that enters problem indirectly. The optimal control problem of finding the minimum miss distance has an analytical solution subject to several simplifying assumptions. In the approach proposed in this paper, the initial population is generated around the seed value given by this analytical solution. Thereafter, the algorithm progresses to an acceptable final solution within a few generations, satisfying the constraints at every iteration. Since this solution or the control input has to be obtained in real time to be of any use in practice, the feasibility of online implementation is also illustrated.
Resumo:
For a feedback system consisting of a transfer function $G(s)$ in the forward path and a time-varying gain $n(t)(0 \leqq n(t) \leqq k)$ in the feedback loop, a stability multiplier $Z(s)$ has been constructed (and used to prove stability) by Freedman [2] such that $Z(s)(G(s) + {1 / K})$ and $Z(s - \sigma )(0 < \sigma < \sigma _ * )$ are strictly positive real, where $\sigma _ * $ can be computed from a knowledge of the phase-angle characteristic of $G(i\omega ) + {1 / k}$ and the time-varying gain $n(t)$ is restricted by $\sigma _ * $ by means of an integral inequality. In this note it is shown that an improved value for $\sigma _ * $ is possible by making some modifications in his derivation. ©1973 Society for Industrial and Applied Mathematics.
Resumo:
In this paper a three-dimensional analysis for statics and dynamics of a class of simply supported rectangular plates made up of micropolar elastic material is presented. The solution is in the form of series, in which each term is explicitly determined. For free vibrations, the frequencies are obtained by the solution of a closed form characteristic equation.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.
Resumo:
This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.
Resumo:
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.
Resumo:
Purpose: A computationally efficient algorithm (linear iterative type) based on singular value decomposition (SVD) of the Jacobian has been developed that can be used in rapid dynamic near-infrared (NIR) diffuse optical tomography. Methods: Numerical and experimental studies have been conducted to prove the computational efficacy of this SVD-based algorithm over conventional optical image reconstruction algorithms. Results: These studies indicate that the performance of linear iterative algorithms in terms of contrast recovery (quantitation of optical images) is better compared to nonlinear iterative (conventional) algorithms, provided the initial guess is close to the actual solution. The nonlinear algorithms can provide better quality images compared to the linear iterative type algorithms. Moreover, the analytical and numerical equivalence of the SVD-based algorithm to linear iterative algorithms was also established as a part of this work. It is also demonstrated that the SVD-based image reconstruction typically requires O(NN2) operations per iteration, as contrasted with linear and nonlinear iterative methods that, respectively, requir O(NN3) and O(NN6) operations, with ``NN'' being the number of unknown parameters in the optical image reconstruction procedure. Conclusions: This SVD-based computationally efficient algorithm can make the integration of image reconstruction procedure with the data acquisition feasible, in turn making the rapid dynamic NIR tomography viable in the clinic to continuously monitor hemodynamic changes in the tissue pathophysiology.
Resumo:
In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones.
Resumo:
In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged. Formation of such procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions. Recent research in supply chain management has emphasized that such decisions need to take into account the fact that suppliers and buyers are intelligent and rational agents who act strategically. In this paper, we view the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a fair manner. We study the implications of using the Shapley value as a solution concept for forming such procurement networks. We also present a protocol, based on the extensive form game realization of the Shapley value, for forming these networks.
Resumo:
Let G = (V,E) be a simple, finite, undirected graph. For S ⊆ V, let $\delta(S,G) = \{ (u,v) \in E : u \in S \mbox { and } v \in V-S \}$ and $\phi(S,G) = \{ v \in V -S: \exists u \in S$ , such that (u,v) ∈ E} be the edge and vertex boundary of S, respectively. Given an integer i, 1 ≤ i ≤ ∣ V ∣, the edge and vertex isoperimetric value at i is defined as b e (i,G) = min S ⊆ V; |S| = i |δ(S,G)| and b v (i,G) = min S ⊆ V; |S| = i |φ(S,G)|, respectively. The edge (vertex) isoperimetric problem is to determine the value of b e (i, G) (b v (i, G)) for each i, 1 ≤ i ≤ |V|. If we have the further restriction that the set S should induce a connected subgraph of G, then the corresponding variation of the isoperimetric problem is known as the connected isoperimetric problem. The connected edge (vertex) isoperimetric values are defined in a corresponding way. It turns out that the connected edge isoperimetric and the connected vertex isoperimetric values are equal at each i, 1 ≤ i ≤ |V|, if G is a tree. Therefore we use the notation b c (i, T) to denote the connected edge (vertex) isoperimetric value of T at i. Hofstadter had introduced the interesting concept of meta-fibonacci sequences in his famous book “Gödel, Escher, Bach. An Eternal Golden Braid”. The sequence he introduced is known as the Hofstadter sequences and most of the problems he raised regarding this sequence is still open. Since then mathematicians studied many other closely related meta-fibonacci sequences such as Tanny sequences, Conway sequences, Conolly sequences etc. Let T 2 be an infinite complete binary tree. In this paper we related the connected isoperimetric problem on T 2 with the Tanny sequences which is defined by the recurrence relation a(i) = a(i − 1 − a(i − 1)) + a(i − 2 − a(i − 2)), a(0) = a(1) = a(2) = 1. In particular, we show that b c (i, T 2) = i + 2 − 2a(i), for each i ≥ 1. We also propose efficient polynomial time algorithms to find vertex isoperimetric values at i of bounded pathwidth and bounded treewidth graphs.