230 resultados para Cerium oxide nanoparticles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the hybrids of single-layer graphene oxide with manganese ferrite magnetic nanoparticles have the best adsorption properties for efficient removal of Pb(II), As(III), and As(V) from contaminated water. The nanohybrids prepared by coprecipitation technique were characterized using atomic force and scanning electron microscopies, Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and surface area measurements. Magnetic character of the nanohybrids was ascertained by a vibrating sample magnetometer. Batch experiments were carried out to quantify the adsorption kinetics and adsorption capacities of the nanohybrids and compared with the bare nanoparticles of MnFe2O4. The adsorption data from our experiments fit the Langmuir isotherm, yielding the maximum adsorption capacity higher than the reported values so far. Temperature-dependent adsorption studies have been done to estimate the free energy and enthalpy of adsorption. Reusability, ease of magnetic separation, high removal efficiency, high surface area, and fast kinetics make these nanohybrids very attractive candidates for low-cost adsorbents for the effective coremoval of heavy metals from contaminated water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigates the potential of graphene oxide-cobalt ferrite nanoparticle (GO-CoFe2O4) composite as image contrast enhancing material in Magnetic Resonance Imaging (MRI). In the preset work, GO-CoFe2O4 composites were produced by a two-step synthesis process. In the first step, graphene oxide (GO) was synthesized, and in the second step CoFe2O4 nanoparticles were synthesized in a reaction mixture containing GO to yield graphene GO-CoFe2O4 composite. Proton relaxivity value obtained from the composite was 361 mM(-1)s(-1). This value of proton relaxivity is higher than a majority of reported relaxivity values obtained using several ferrite based contrast agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, multiwall carbon nanotubes (MWNTs) were chemically grafted onto dopamine anchored iron oxide (Fe3O4) nanoparticles via diazotization reaction to design electromagnetic (EM) shielding materials based on PC (polycarbonate)/SAN poly (styrene-co-acrylonitrile)] blends. A two step mixing protocol was adopted to selectively localize the nanoparticles in a given phase of the blends. In the first step, MWNT-g-Fe3O4 nanoparticles were solution blended with PC, followed by dilution with SAN during melt mixing in the subsequent step. This strategy, besides improving the quality of dispersion of MWNTs in the blends, facilitated enhanced EM interference shielding effectiveness (SE). Both, the MWNTs and the modified MWNTs, selectively localized in the PC phase and led to high electrical conductivity, in striking contrast to PC filled MWNT composites. The SE was measured on toroidal samples over a broad range of frequencies; X-band (8.2-12 GHz) and K-u-band (12-18 GHz). It was observed that the shielding mechanism mostly involved reflection in the blends with MWNTs, whereas absorption dominated in the case of blends with MWNT-g-Fe3O4. To realize the efficacy of this strategy, a few compositions were prepared by physical mixing MWNTs with Fe3O4 nanoparticles. Intriguingly, blends with MWNT-g-Fe3O4 nanoparticles manifested enhanced microwave absorption over physically mixed nanoparticles. An SE of -32.5 dB was observed (at 18 GHz) for MWNT (3 wt%)-g-Fe3O4 (3 vol%) in PC/SAN blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(epsilon-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an electrochemical alloying reaction, the electroactive particles become mechanically unstable owing to large volume changes occurring as a result of high amounts of lithium intake. This is detrimental for long-term battery performance. Herein, a novel synthesis approach to minimize such mechanical instabilities in tin particles is presented. An optimal one-dimensional assembly of crystalline single-phase tin-antimony (SnSb) alloy nanoparticles inside porous carbon fibers (abbreviated SnSb-C) is synthesized for the first time by using the electrospinning technique (employing non-oxide precursors) in combination with a sintering protocol. The ability of antimony to alloy independently with lithium is beneficial as it buffers the unfavorable volume changes occurring during successive alloying/dealloying cycles in Sn. The SnSb-C assembly provides nontortuous (tortuosity coefficient, =1) fast conducting pathways for both electrons and ions. The presence of carbon in SnSb-C completely nullifies the conventional requirement of other carbon forms during cell electrode assembly. The SnSb-C exhibited remarkably high electrochemical lithium stability and high specific capacities over a wide range of currents (0.2-5Ag(-1)). In addition to lithium-ion batteries, it is envisaged that SnSb-C also has potential as a noncarbonaceous anode for other battery chemistries, such as sodium-ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of graphene oxide-Fe3O4 nanoparticle (GO-Fe3O4) composite as an image contrast enhancing material in magnetic resonance imaging has been investigated. Proton relaxivity values were obtained in three different homogeneous dispersions of GO-Fe3O4 composites synthesized by precipitating Fe3O4 nanoparticles in three different reaction mixtures containing 0.01 g, 0.1 g, and 0.2 g of graphene oxide. A noticeable difference in proton relaxivity values was observed between the three cases. A comprehensive structural and magnetic characterization revealed discrete differences in the extent of reduction of the graphene oxide and spacing between the graphene oxide sheets in the three composites. The GO-Fe3O4 composite framework that contained graphene oxide with least extent of reduction of the carboxyl groups and largest spacing between the graphene oxide sheets provided the optimum structure for yielding a very high transverse proton relaxivity value. It was found that the GO-Fe3O4 composites possessed good biocompatibility with normal cell lines, whereas they exhibited considerable toxicity towards breast cancer cells. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, porous membranes were designed by selectively etching the PEO phase, by water, from a melt-mixed PE/PEO blend. The pure water flux and the resistance across the membrane were systematically evaluated by employing an indigenously developed cross flow membrane setup. Both the phase morphology and the cross sectional morphology of the membranes was assessed by scanning electron microscopy and an attempt was made to correlate the observed morphology with the membrane performance. In order to design antibacterial membranes for water purification, partially reduced graphene oxide (rGO), silver nanoparticles (Ag) and silver nanoparticles decorated with rGO (rGO-Ag) were synthesized and incorporated directly into the blends during melt mixing. The loss of viability of bacterial cells was determined by the colony counting method using E. coli as a model bacterium. SEM images display that the direct contact with the rGO-Ag nanoparticles disrupts the cell membrane. In addition, the rGO-Ag nanoparticles exhibited a synergistic effect with respect to bacterial cell viability in comparison to both rGO and Ag nanoparticles. The possible mechanism associated with the antibacterial activity in the membranes was discussed. This study opens new avenues in designing antibacterial membranes for water purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene oxide-CoFe2O4 nanoparticle composites were synthesized using a two step synthesis method in which graphene oxide was initially synthesized followed by precipitation of CoFe2O4 nanoparticles in a reaction mixture containing graphene oxide. Samples were extracted from the reaction mixture at different times at 80 degrees C. All the extracted samples contained CoFe2O4 nanoparticles formed over the graphene oxide. It was observed that the increase in the reflux time significantly increased the saturation magnetization value for the superparamagnetic nanoparticles in the composite. It was also noticed that the size of the nanoparticles increased with increase in the reflux time. Transverse relaxivity of the water protons increased monotonically with increase in the reflux time. Whereas, the longitudinal relaxivity value initially increased and then decreased with the reflux time. Graphene oxide-CoFe2O4 nanoparticle composites also exhibit biocompatibility towards the MCF-7 cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdS nanoparticles exhibit size dependent optical and electrical properties. We report here the photocurrent and I-V characteristic studies of CdS nanoparticle devices. A sizable short circuit photocurrent was observed in the detection range governed by the size of the clusters. We speculate on the mechanisms leading to the photocurrent and emission in these nanometer scale systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly( ethylene oxide), poly(vinyl alcohol): and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water p-resent in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesostructured lamellar chromium oxide with an interlayer separation of 29 Angstrom has been prepared by employing a cationic surfactant. The introduction of phosphate groups in the oxide increases the interlayer separation to 32 Angstrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Imatinib, a small-molecule inhibitor of the Bcr-Abl kinase, is a successful drug for treating chronic myeloid leukemia (CML). Bcr-Abl kinase stimulates the production of H2O2, which in turn activates Abl kinase. We therefore evaluated whether N-acetyl cysteine (NAC), a ROS scavenger improves imatinib efficacy. Effects of imatinib and NAC either alone or in combination were assessed on Bcr-Abl(+) cells to measure apoptosis. Role of nitric oxide (NO) in NAC-induced enhanced cytotoxicity was assessed using pharmacological inhibitors and siRNAs of nitric oxide synthase isoforms. We report that imatinib-induced apoptosis of imatinib-resistant and imatinib-sensitive Bcr-Abl(+) CML cell lines and primary cells from CML patients is significantly enhanced by co-treatment with NAC compared to imatinib treatment alone. In contrast, another ROS scavenger glutathione reversed imatinib-mediated killing. NAC-mediated enhanced killing correlated with cleavage of caspases, PARP and up-regulation and down regulation of pro- and anti-apoptotic family of proteins, respectively. Co-treatment with NAC leads to enhanced production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS). Involvement of eNOS dependent NO in NAC-mediated enhancement of imatinib-induced cell death was confirmed by nitric oxide synthase (NOS) specific pharmacological inhibitors and siRNAs. Indeed, NO donor sodium nitroprusside (SNP) also enhanced imatinib-mediated apoptosis of Bcr-Abl(+) cells. NAC enhances imatinib-induced apoptosis of Bcr-Abl(+) cells by endothelial nitric oxide synthase-mediated production of nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous structures with high active surface areas are critical for a variety of applications. Here, we present a general templateless strategy to produce such porous structures by controlled aggregation of nanostructured subunits and apply the principles for synthesizing nanoporous Pt for electrocatalytic oxidation of methanol. The nature of the aggregate produced is controlled by tuning the electrostatic interaction between surfactant-free nanoparticles in the solution phase. When the repulsive force between the particles is very large, the particles are stabilized in the solution while instantaneous aggregation leading to fractal-like structures results when the repulsive force is very low. Controlling the repulsive interaction to an optimum, intermediate value results in the formation of compact structures with very large surface areas. In the case of Pt, nanoporous clusters with an extremely high specific surface area (39 m(2)/g) and high activity for methanol oxidation have been produced. Preliminary investigations indicate that the method is general and can be easily extended to produce nanoporous structures of many inorganic materials.