51 resultados para Caribbean and Mediterranean evolution
Resumo:
Due to environmental concerns, health hazards to man and the evolution of resistance in insect pests, there have been constant efforts to discover newer insecticides both from natural sources and by chemical synthesis. Natural sources for novel molecules hold promise in view of their eco-friendly nature, selectivity and mammalian safety. We have isolated one natural bioactive molecule from the leaves of Lantana camara named Coumaran, based on various physical-chemical and spectroscopic techniques (IR, H-1 NMR, C-13 NMR and MS). Coumaran is highly toxic and very low concentration is needed for control of stored product insects. This molecule has potent grain protectant potential and caused significant reduction in F1 progeny of all the three species in the treated grain and the progeny was completely suppressed at 30 mu g/l. The differences in germination between the control and treated grains were not significant. The lack of any adverse effect of Coumaran on the seed germination is highly desirable for a grain protectant, becoming a potential source of biofumigant for economical and environmentally friendly pest control strategies against stored grain pests during storage of grains or pulses. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Solid diffusion couple experiments are conducted to analyse the growth mechanism of the phases and the diffusion mechanism of the components in the Ti-Si system. The calculation of the parabolic growth constants and the integrated diffusion coefficients substantiates that the analysis is intrinsically prone to erroneous conclusions if it is based on just the parabolic growth constants determined for a multiphase interdiffusion zone. The location of the marker plane is detected based on the uniform grain morphology in the TiSi2 phase, which indicates that this phase grows mainly because of Si diffusion. The growth mechanism of the phases and morphological evolution in the interdiffusion zone are explained with the help of imaginary diffusion couples. The activation enthalpies for the integrated diffusion coefficient of TiSi2 and the Si tracer diffusion are calculated as 190 +/- 9 and 197 +/- 8 kJ/mol, respectively. The crystal structure, details on the nearest neighbours of the components, and their relative mobilities indicate that the vacancies are mainly present on the Si sublattice.
Resumo:
This paper reports on an experimental study on the ploughing or orthogonal cutting in sand. Plane strain cutting or ploughing experiments were carried out on model Ottawa sand while being imaged at high resolution. The images obtained were further processed using image analysis and the evolution of the velocity and deformation fields were obtained from these analysis. The deformation fields show the presence of a clear shear zone in which the sand accrues deformation. A net change in the direction of the velocity of the sand is also clearly visible. The effective depth of cut of the sand also increases with continuous cutting as the sand reposes on itself. This deformation mechanics at the incipient stages of cutting is similar to that observed in metal cutting.
Resumo:
The bglA gene of Escherichia coli encodes phospho-beta-glucosidase A capable of hydrolyzing the plant-derived aromatic beta-glucoside arbutin. We report that the sequential accumulation of mutations in bglA can confer the ability to hydrolyze the related aromatic beta-glucosides esculin and salicin in two steps. In the first step, esculin hydrolysis is achieved through the acquisition of a four-nucleotide insertion within the promoter of the bglA gene, resulting in enhanced steady-state levels of the bglA transcript. In the second step, hydrolysis of salicin is achieved through the acquisition of a point mutation within the bglA structural gene close to the active site without the loss of the original catabolic activity against arbutin. These studies underscore the ability of microorganisms to evolve additional metabolic capabilities by mutational modification of preexisting genetic systems under selection pressure, thereby expanding their repertoire of utilizable substrates.
Resumo:
Many bacterial transcription factors do not behave as per the textbook operon model. We draw on whole genome work, as well as reported diversity across different bacteria, to argue that transcription factors may have evolved from nucleoid-associated proteins. This view would explain a large amount of recent data gleaned from high-throughput sequencing and bioinformatic analyses.
Resumo:
Following transmission, HIV-1 adapts in the new host by acquiring mutations that allow it to escape from the host immune response at multiple epitopes. It also reverts mutations associated with epitopes targeted in the transmitting host but not in the new host. Moreover, escape mutations are often associated with additional compensatory mutations that partially recover fitness costs. It is unclear whether recombination expedites this process of multi-locus adaptation. To elucidate the role of recombination, we constructed a detailed population dynamics model that integrates viral dynamics, host immune response at multiple epitopes through cytotoxic T lymphocytes, and viral evolution driven by mutation, recombination, and selection. Using this model, we compute the expected waiting time until the emergence of the strain that has gained escape and compensatory mutations against the new host's immune response, and reverted these mutations at epitopes no longer targeted. We find that depending on the underlying fitness landscape, shaped by both costs and benefits of mutations, adaptation proceeds via distinct dominant pathways with different effects of recombination, in particular distinguishing escape and reversion. When adaptation at a single epitope is involved, recombination can substantially accelerate immune escape but minimally affects reversion. When multiple epitopes are involved, recombination can accelerate or inhibit adaptation depending on the fitness landscape. Specifically, recombination tends to delay adaptation when a purely uphill fitness landscape is accessible at each epitope, and accelerate it when a fitness valley is associated with each epitope. Our study points to the importance of recombination in shaping the adaptation of HIV-1 following its transmission to new hosts, a process central to T cell-based vaccine strategies. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.