55 resultados para CYTOKINE SIGNALING-1
Resumo:
Two new 2-(2-aminophenyl)benzimidazole-based HSO4- ion selective receptors, 6-(4-nitrophenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c]quinazoline (L1H) and 6-(4-methoxyphenyl)-5,6-dihydrobenzo4,5]imidazo1,2-c] quinazoline (L2H), and their 1 : 1 molecular complexes with HSO4- were prepared in a facile synthetic method and characterized by physicochemical and spectroscopic techniques along with the detailed structural analysis of L1H by single crystal X-ray crystallography. Both receptors (L1H and L2H) behave as highly selective chemosensor for HSO4- ions at biological pH in ethanol-water HEPES buffer (1/5) (v/v) medium over other anions such as F-, Cl-, Br-, I-, AcO-, H2PO4-, N-3(-) and ClO4-. Theoretical and experimental studies showed that the emission efficiency of the receptors (L1H and L2H) was tuned successfully through single point to ratiometric detection by employing the substituent effects. Using 3 sigma method the LOD for HSO4- ions were found to be 18.08 nM and 14.11 nM for L1H and L2H, respectively, within a very short responsive time (15-20 s) in 100 mM HEPES buffer (ethanol-water: 1/5, v/v). Comparison of the utility of the probes (L1H and L2H) as biomarkers for the detection of intracellular HSO4- ions concentrations under a fluorescence microscope has also been included and both probes showed no cytotoxic effect.
Resumo:
Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth.
Resumo:
Redox signaling plays a crucial role in the pathogenesis of human immunodeficiency virus type-1 (HIV-1). The majority of HIV redox research relies on measuring redox stress using invasive technologies, which are unreliable and do not provide information about the contributions of subcellular compartments. A major technological leap emerges from the development of genetically encoded redox-sensitive green fluorescent proteins (roGFPs), which provide sensitive and compartment-specific insights into redox homeostasis. Here, we exploited a roGFP-based specific bioprobe of glutathione redox potential (E-GSH; Grx1-roGFP2) and measured subcellular changes in E-GSH during various phases of HIV-1 infection using U1 monocytic cells (latently infected U937 cells with HIV-1). We show that although U937 and U1 cells demonstrate significantly reduced cytosolic and mitochondrial E-GSH (approximately -310 mV), active viral replication induces substantial oxidative stress (E-GSH more than -240 mV). Furthermore, exposure to a physiologically relevant oxidant, hydrogen peroxide (H2O2), induces significant deviations in subcellular E-GSH between U937 and U1, which distinctly modulates susceptibility to apoptosis. Using Grx1-roGFP2, we demonstrate that a marginal increase of about similar to 25 mV in E-GSH is sufficient to switch HIV-1 from latency to reactivation, raising the possibility of purging HIV-1 by redox modulators without triggering detrimental changes in cellular physiology. Importantly, we show that bioactive lipids synthesized by clinical drug-resistant isolates of Mycobacterium tuberculosis reactivate HIV-1 through modulation of intracellular E-GSH. Finally, the expression analysis of U1 and patient peripheral blood mononuclear cells demonstrated a major recalibration of cellular redox homeostatic pathways during persistence and active replication of HIV.
Resumo:
In addition to its role in innate immunity, the intracellular pathogen sensor nucleotide-binding oligomerization domain 2 (NOD2) has been implicated in various inflammatory disorders, including the development of acute arthritis. However, the molecular mechanisms involved in the development of NOD2-responsive acute arthritis are not clear. In this study, we demonstrate that NOD2 signals to a cellular protein, Ly6/PLAUR domain-containing protein 6, in a receptor-interacting protein kinase 2-TGF-beta-activated kinase 1-independent manner to activate the WNT signaling cascade. Gain- or loss-of-function of the WNT signaling pathway in an in vivo experimental mouse arthritis model or in vitro systems established the role for WNT-responsive X-linked inhibitor of apoptosis during the development of acute arthritis. Importantly, WNT-stimulated X-linked inhibitor of apoptosis mediates the activation of inflammasomes. The subsequent caspase-1 activation and IL-1 beta secretion together contribute to the phenotypic character of the inflammatory condition of acute arthritis. Thus, identification of a role for WNT-mediated inflammasome activation during NOD2 stimulation serves as a paradigm to understand NOD2-associated inflammatory disorders and develop novel therapeutics.
Resumo:
Actions of transforming growth factor-beta are largely context dependent. For instance, TGF-beta is growth inhibitory to epithelial cells and many tumor cell-lines while it stimulates the growth of mesenchymal cells. TGF-beta also activates fibroblast cells to a myofibroblastic phenotype. In order to understand how the responsiveness of fibroblasts to TGF-beta would change in the context of transformation, we have compared the differential gene regulation by TGF-beta in immortal fibroblasts (hFhTERT), transformed fibroblasts (hFhTERT-LTgRAS) and a human fibrosarcoma cell-line (HT1080). The analysis revealed regulation of 6735, 4163, and 3478 probe-sets by TGF-beta in hFhTERT, hFhTERT-LTgRAS and HT1080 cells respectively. Intriguingly, 5291 probe-sets were found to be either regulated in hFhTERT or hFhTERT-LTgRAS cells while 2274 probe-sets were regulated either in hFhTERT or HT1080 cells suggesting that the response of immortal hFhTERT cells to TGF-beta is vastly different compared to the response of both the transformed cells hFhTERT-LTgRAS and HT1080 to TGF-beta. Strikingly, WNT pathway showed enrichment in the hFhTERT cells in Gene Set Enrichment Analysis. Functional studies showed induction of WNT4 by TGF-beta in hFhTERT cells and TGF-beta conferred action of these cells was mediated by WNT4. While TGF-beta activated both canonical and non-canonical WNT pathways in hFhTERT cells, Erk1/2 and p38 Mitogen Activated Protein Kinase pathways were activated in hFhTERT-LTgRAS and HT1080 cells. This suggests that transformation of immortal hFhTERT cells by SV40 large T antigen and activated RAS caused a switch in their response to TGF-beta which matched with the response of HT1080 cells to TGF-beta. These data suggest context dependent activation of non-canonical signaling by TGF-beta. (C) 2015 Published by Elsevier Inc.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
Glioblastomas (GBM) are largely incurable as they diffusely infiltrate adjacent brain tissues and are difficult to diagnose at early stages. Biomarkers derived from serum, which can be obtained by minimally invasive procedures, may help in early diagnosis, prognosis and treatment monitoring. To develop a serum cytokine signature, we profiled 48 cytokines in sera derived from normal healthy individuals (n = 26) and different grades of glioma patients (n = 194). We divided the normal and grade IV glioma/GBM serum samples randomly into equal sized training and test sets. In the training set, the Prediction Analysis for Microarrays (PAM) identified a panel of 18 cytokines that could discriminate GBM sera fromnormal sera with maximum accuracy (95.40%) and minimum error (4.60%). The 18-cytokine signature obtained in the training set discriminated GBM sera from normal sera in the test set as well (accuracy 96.55%; error 3.45%). Interestingly, the 18-cytokine signature also differentiated grade II/Diffuse Astrocytoma (DA) and grade III/Anaplastic Astrocytoma (AA) sera from normal sera very efficiently (DA vs. normal-accuracy 96.00%, error 4.00%; AA vs. normal-accuracy 95.83%, error 4.17%). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using 18 cytokines resulted in the enrichment of two pathways, cytokine-cytokine receptor interaction and JAK-STAT pathways with high significance. Thus our study identified an 18-cytokine signature for distinguishing glioma sera fromnormal healthy individual sera and also demonstrated the importance of their differential abundance in glioma biology.
Resumo:
Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.
Resumo:
Glioblastoma (GBM) is the most common malignant adult primary brain tumor. We profiled 724 cancer-associated proteins in sera of healthy individuals (n = 27) and GBM (n = 28) using antibody microarray. While 69 proteins exhibited differential abundance in GBM sera, a three-marker panel (LYAM1, BHE40 and CRP) could discriminate GBM sera from that of healthy donors with an accuracy of 89.7% and p < 0.0001. The high abundance of C-reactive protein (CRP) in GBM sera was confirmed in 264 independent samples. High levels of CRP protein was seen in GBM but without a change in transcript levels suggesting a non-tumoral origin. Glioma-secreted Interleukin 6 (IL6) was found to induce hepatocytes to secrete CRP, involving JAK-STAT pathway. The culture supernatant from CRP-treated microglial cells induced endothelial cell survival under nutrient-deprivation condition involving CRP-Fc gamma RIII signaling cascade. Transcript profiling of CRP-treated microglial cells identified Interleukin 1 beta (IL1 beta) present in the microglial secretome as the key mediator of CRP-induced endothelial cell survival. IL1 beta neutralization by antibody-binding or siRNA-mediated silencing in microglial cells reduced the ability of the supernatant from CRP-treated microglial cells to induce endothelial cell survival. Thus our study identifies a serum based three-marker panel for GBM diagnosis and provides leads for developing targeted therapies. Biological significance A complex antibody microarray based serum marker profiling identified a three-marker panel - LYAM1, BHE40 and CRP as an accurate discriminator of glioblastoma sera from that of healthy individuals. CRP protein is seen in high levels without a concomitant increase of CRP transcripts in glioblastoma. Glioma-secreted IL6 induced hepatocytes to produce CRP in a JAK-STAT signaling dependent manner. CRP induced microglial cells to release IL1 beta which in turn promoted endothelial cell survival. This study, besides defining a serum panel for glioblastoma discrimination, identified IL1 beta as a potential candidate for developing targeted therapy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Immune responses during fungal infections are predominately mediated by 5/15-lipoxygenases (LO)-or cyclooxygenase (COX)-2-catalysed bioactive eicosanoid metabolites like leukotrienes, lipoxins and prostaglandins. Although few host mediators of fungi-triggered eicosanoid production have been established, the molecular mechanism of expression and regulation of 5-LO, 15-LO and COX-2 are not well-defined. Here, we demonstrate that, macrophages infected with representative fungi Candida albicans, Aspergillus flavus or Aspergillus fumigatus or those treated with Curdlan, a selective agonist of pattern recognition receptor for fungi Dectin-1, displays increased expression of 5-LO, 15-LO and COX-2. Interestingly, Dectin-1-responsive Syk pathway activates mTOR-sonic hedgehog (SHH) signaling cascade to stimulate the expression of these lipid metabolizing enzymes. Loss-of-function analysis of the identified intermediaries indicates that while Syk-mTOR-SHH pathway-induced 5-LO and 15-LO suppressed the Dectin-l-responsive pro-inflammatory signature cytokines like TNE-alpha, IL-1 beta and IL-12, Syk-mTOR-SHH-induced COX-2 positively regulated these cytokines. Dectin-1-stimulated IL-6, however, is dependent on 5-LO, 15-LO and COX-2 activity. Together, the current study establishes Dectin-1-arbitrated host mediators that direct the differential regulation of immune responses during fungal infections and thus are potential candidates of therapeutic intervention. (C) 2015 Elsevier Ltd. All rights reserved.