63 resultados para COLLAPSE DISORDER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental results on the generation and collapse of multielectron bubbles in liquid helium. By applying voltage pulses to a tungsten tip above the surface of the liquid, millimetre sized deformations were formed. Using high speed photography, we have imaged the disintegration of these deformations into bubbles of sizes ranging from ten to few hundred microns. At temperatures less than 2 K, the bubbles split into smaller bubbles and then disappeared in a time scale of few milliseconds. Smaller bubbles were formed at temperatures around 3 K, but were visible for more than hundreds of milliseconds. Although we have not been able to measure their charge directly, some of these bubbles responded to electric fields, implying these were indeed multielectron bubbles. With the existing theoretical picture, it is not possible to understand the strong dependence of the lifetime of multielectron bubbles on temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of fourfold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one-dimensional fluctuations arising from the chains. We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one-dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on Raman and Ni K-edge x-ray absorption investigations of a NiS2-xSex (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS2-xSex Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS2-xSex pyrites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric field activated charge transport is studied in the metal/polymer/metal device structure of electropolymerized polypyrrole down to 10 K with varying carrier density and disorder. Disorder induced nonlinear behaviour is observed in polypyrrole devices grown at room temperature which is correlated to delocalization of states. The slope parameter of currentvoltage characteristics (in log-log scale) increases as the temperature decreases, which indicates the onset of stronger field dependence. The field dependence of mobility becomes dominant as the carrier density decreases. The sharp dip in differential conductance indicates the localization of carriers at low temperatures which reduces the effective number of carriers involved in the transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present study reveals that the length-scale of phase separation in La5/8-yPryCa3/8MnO3 thin films can be controlled by strain disorder invoked during the growth and relaxation process of film. Strain disorder provides an additional degree of freedom to tune colossal magnetoresistance. Magneto-transport measurements following cooling and heating in unequal fields protocol demonstrate that coherent strain stabilizes antiferromagnetic insulating phase, while strain disorder favors ferromagnetic metallic phase. Compared to bulk, antiferromagnetic-insulating phase freezes at lower temperatures in strain disordered films. Raman spectroscopy confirms the coexistence of charge-ordered-insulating and ferromagnetic-metallic phases which are structurally dissimilar and possess P2(1)/m and R-3C like symmetries, respectively. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obsessive compulsive symptoms frequently occur in a substantial proportion of patients with schizophrenia. The term schizoobsessive has been proposed to delineate this subgroup of schizophrenia patients who present with obsessive compulsive symptoms/disorder. However, whether this co-occurrence is more than just co-morbidity and represents a distinct subgroup remains controversial. A striking variation is noted across studies examining prevalence of obsessive compulsive symptoms/disorder in schizophrenia patients and their impact on clinical profile of schizophrenia. Hence, in this study, we examined the prevalence of obsessive compulsive symptoms/disorder in a large sample of consecutively hospitalized schizophrenia patients and compared the clinical and functional characteristics of schizophrenia patients with and without obsessive compulsive symptoms/disorder. We evaluated 200 consecutive subjects with the DSM-IV diagnosis of schizophrenia using the Structured Clinical Interview for DSM-IV Axis I disorders, Positive and Negative Syndrome Scale, Yale Brown Obsessive Compulsive Scale, Brown Assessment of Beliefs Scale, Clinical Global Impression-Severity scale, Global Assessment of Functioning Scale, Family Interview for Genetic Studies and World Health Organization Quality of Life scale. The prevalence of obsessive compulsive symptoms in patients with schizophrenia was 24% (n = 48); 37 of them had obsessive compulsive disorder (OCD) and II had obsessive compulsive symptoms not amounting to a clinical diagnosis of OCD (OCS). Schizophrenia patients with OCS/OCD had an earlier age at onset of schizophrenia symptoms, lower positive symptoms score, higher co-morbidity with Axis II disorders, higher occurrence of OCD in family and better quality of life. Findings of the study indicate a higher prevalence of OCS/OCD in schizophrenia. Schizophrenia patients with and without OCS/OCD have comparable clinical profile with few exceptions. High rates of OCD in first degree relatives suggest possible genetic contributions and differences in neurobiology. Finally, evidence to consider schizoobsessive as a distinct diagnostic entity is inconclusive and warrants further studies. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Asymmetry in brain structure and function is implicated in the pathogenesis of psychiatric disorders. Although right hemisphere abnormality has been documented in obsessive-compulsive disorder (OCD), cerebral asymmetry is rarely examined. Therefore, in this study, we examined anomalous cerebral asymmetry in OCD patients using the line bisection task. Methods A total of 30 patients with OCD and 30 matched healthy controls were examined using a reliable and valid two-hand line bisection (LBS) task. The comparative profiles of LBS scores were analysed using analysis of covariance. Results Patients with OCD bisected significantly less number of lines to the left and had significant rightward deviation than controls, indicating right hemisphere dysfunction. The correlations observed in this study suggest that those with impaired laterality had more severe illness at baseline. Conclusions The findings of this study indicate abnormal cerebral lateralisation and right hemisphere dysfunction in OCD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium aluminate spinel (MgAl2O4) forms an interesting system having tetrahedral and octahedral voids filled with near similar sized divalent Mg2+ and trivalent Al3+ cations. Structural disorder (e.g., Mg-Al antisite defects) can be tuned by synthetic conditions. This study reports the evolution of Mg/Al disorder in MgAl2O4 prepared by combustion synthesis using different types of fuels. The effect of nature of fuel and the final calcination temperature (600 degrees C-900 degrees C for 9h) on degree of cation ordering has been investigated combining powder X-ray (XRD) and neutron (NPD) diffraction. The results indicate very high degree of inversion in the samples crystallized at low annealing temperature, which on further annealing reduces toward the thermodynamically stable values. Raman spectroscopy, probing MgO4, and AlO4 tetrahedral bonds, confirmed the results at a local level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenesis of the iron-sulfur (Fe-S) cluster is an indispensable process in living cells. In mammalian mitochondria, the initial step of the Fe-S cluster assembly process is assisted by the NFS1-ISD11 complex, which delivers sulfur to scaffold protein ISCU during Fe-S cluster synthesis. Although ISD11 is an essential protein, its cellular role in Fe-S cluster biogenesis is still not defined. Our study maps the important ISD11 amino acid residues belonging to putative helix 1 (Phe-40), helix 3 (Leu-63, Arg-68, Gln-69, Ile-72, Tyr-76), and C-terminal segment (Leu-81, Glu-84) are critical for in vivo Fe-S cluster biogenesis. Importantly, mutation of these conserved ISD11 residues into alanine leads to its compromised interaction with NFS1, resulting in reduced stability and enhanced aggregation of NFS1 in the mitochondria. Due to altered interaction with ISD11 mutants, the levels of NFS1 and Isu1 were significantly depleted, which affects Fe-S cluster biosynthesis, leading to reduced electron transport chain complex (ETC) activity and mitochondrial respiration. In humans, a clinically relevant ISD11 mutation (R68L) has been associated in the development of a mitochondrial genetic disorder, COXPD19. Our findings highlight that the ISD11 R68A/R68L mutation display reduced affinity to form a stable subcomplex with NFS1, and thereby fails to prevent NFS1 aggregation resulting in impairment of the Fe-S cluster biogenesis. The prime affected machinery is the ETC complex, which showed compromised redox properties, causing diminished mitochondrial respiration. Furthermore, the R68L ISD11 mutant displayed accumulation of mitochondrial iron and reactive oxygen species, leading to mitochondrial dysfunction, which correlates with the phenotype observed in COXPD19 patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.