155 resultados para CATALYTIC ETHENE POLYMERIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis is the leading cause of death in intensive care units and results from a deleterious systemic host response to infection. Although initially perceived as potentially deleterious, catalytic antibodies have been proposed to participate in removal of metabolic wastes and protection against infection. Here we show that the presence in plasma of IgG endowed with serine protease-like hydrolytic activity strongly correlates with survival from sepsis. Variances of catalytic rates of IgG were greater in the case of patients with severe sepsis than healthy donors (P < 0.001), indicating that sepsis is associated with alterations in plasma levels of hydrolytic IgG. The catalytic rates of IgG from patients who survived were significantly greater than those of IgG from deceased patients (P < 0.05). The cumulative rate of survival was higher among patients exhibiting high rates of IgG-mediated hydrolysis as compared with patients with low hydrolytic rates (P < 0.05). An inverse correlation was also observed between the markers of severity of disseminated intravascular coagulation and rates of hydrolysis of patients' IgG. Furthermore, IgG from three surviving patients hydrolyzed factor VIII, one of which also hydrolyzed factor IX, suggesting that, in some patients, catalytic IgG may participate in the control of disseminated microvascular thrombosis. Our observations provide the first evidence that hydrolytic antibodies might play a role in recovery from a disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic cracking of acetic acid using triethyl phosphate and silica gel catalysts was investigated. The desired reaction leading to ketene is accompanied by side reactions: two parallel with respect to acetic acid decomposition and the consecutive ketene decomposition reactions. Effect of temperature, catalyst concentration, space velocity, and pressure was studied in detail. Triethyl phosphate was found to be a much better catalyst than silica gel. The optimum yield of ketene was obtained at 750° C, 100 mm. of Hg pressure, and apparent contact time of 5.687 × 10-4 hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic dehydrogenation of 2-propanol over Cu-SiO2 catalyst was investigated. The undesired side reaction of dehydration can be controlled by a selective catalyst and choice of proper operating conditions. The kinetics of the heterogeneous catalytic reaction can be adequately expressed by a forward first-order and reverse second-order mechanism. The rate-controlling step with chemically pure 2-propanol is single-site surface reaction, while for the technical grade alcohol the adsorption of alcohol is rate-controlling. The static bed data are compared with the fluidized bed dat

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five new thiosulfate based inorganic-organic hybrid open-framework compounds have been synthesized employing mild reaction conditions. Of the five compounds, [Na-2(H2O)(8)][Cd(C10H8N2)( S2O3)(2)]center dot 2H(2)O, I and [Cd-2(C10H8N2)(2)(HS2O3)(2)(S2O3)(2)][(C10H9N2)(2)(C10H8N2)(2)]center dot 8H(2)O, II have one-dimensional (1D) structures and [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III, [Cd-2(C10H8N2)(3)(S2O3)(2)], IV and [Cd-2(C10H8N2)(2.5)(S2O3)(2)], V have three- dimensional (3D) structures. The 1D structures are somewhat related, formed by the bonding between tetrahedral Cd centers (CdN2S2) and 4,4'-bipyridine (bpy) units. The inter-chain spaces are occupied by the hanging thiosulfate units in both the cases along with Na(H2O)(6) chains in I and free bpy units in II. The three 3D structures have one-dimensional cadmium thiosulfate chains linked by bpy units. Interpenetration has been observed in all the 3D structures. The 3D structures appear to be related and can be derived from fgs net. Transformation studies on the 1D compound, [Na-2(H2O)(8)][Cd(C10H8N2)(S2O3)(2)]center dot 2H(2)O, I, indicated a facile formation of [Cd(C10H8N2)(H2O)(2)(S2O3)]center dot 2H(2)O, III. Prolonged heating of I gave rise to a 3D cadmium sulfate phase, [Cd-2(C10H8N2)(2)(H2O)(3)(SO4)(2)]center dot 2H(2)O, VI. Compound VI has one-dimensional cadmium sulfate chains formed by six-membered rings connected by bpy units to form a 3D structure, which appears to resemble the topological arrangement of III. Transformation studies of III indicates the formation of IV and V, and at a higher temperature a new 3D cadmium sulfate, [Cd(C10H8N2)(SO4)], VII. Compound VII has a 4 x 4 grid cadmium sulfate layers pillared by bpy units. All the compounds were characterized by PXRD, TGA, IR and UV-visible studies. Preliminary studies on the possible use of the 3D compounds (III-VII) in heterogeneous cyanosilylation of imines appear to be promising.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copper(II) complex [Cu(salgly) (bpy)] . 4H(2)O (1), where salgly is a tridentate glycinatosalicylaldimine Schiffbase Ligand, is prepared and structurally characterized. The complex is found to be catalytically active in the oxidation of ascorbic acid by dioxygen and the process is also effective in the presence of benzylamine giving benzaldehyde as a product, thus modeling the activity of the Cu-B site of dopamine beta-hydroxylase. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid-phase homogeneous catalytic oxidation of styrene with Wilkinson complex by molecular oxygen in toluene medium gave selectively benzaldehyde and formaldehyde as the primary products. Higher temperatures and styrene conversions eventually led to acid formation due to co-oxidation of aldehyde.A reaction induction period and an initiation period, typical of free-radical reactions, characterized the oxidation process. The effects of temperature and catalyst and styrene concentrations on the conversion of styrene to benzaldehyde and acid formation have been studied. The optimum reaction parameters have been determined as a styrene-to-solvent mole ratio of 0.5, a catalyst-to-styrene mole ratio of 5.0 X lo4, and a reaction temperature of 75 "C. A reaction scheme based upon free-radical mechanism yielded a pseudo-first-order model which agreed well with the observed kinetic data in the absence of co-oxidation of aldehyde. A second-order model was found to fit the experimental data better in the case of aldehyde conversion to acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactivity of Grignard reagents towards imines in the presence of catalytic and stoichiometric amounts of titanium alkoxides is reported.Alkylation, reduction, and coupling of imines take place. Whereas reductive coupling is the major reaction in stoichiometric reactions, alkylation is favored in catalytic reactions. Mechanistic studies clearly indicate that intermediates involved in the two reactions are different. Catalytic reactions involve a metal alkyl complex. This has been confirmed by reactions of deuterium-labeled substrates and different alkylating agents. Under the stoichiometric conditions, however, titanium olefin complexes are formed through reductive elimination, probably through a multinuclear intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xTixO2 (0 <= x <= 0.4) and Ce1-xTixPtyO2-delta (x = 0.15, gamma = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce1-xTixO2 (x = 0.0-04) show complete reduction of Ti4+ to Ti3+ and reduction of similar to 20% Ce4+ to Ce3+ state compared to 8% Ce4+ to Ce3+ in the case of pure CeO2 below 675 degrees C. The substitution of Ti ions in CeO2 enhances the reducibility of CeO2. Ce0.84Ti0.15Pt0.01O2-delta crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce0.84Ti0.15Pt0.01O2-delta is 5 and that over Ce0.99Pt0.01O2-delta is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce1-x-yTixPtyO2 (x = 0.15, 0.01, 0.02) compared to Ce1-xPtxO2 (x = 0.01, 0.02). Synergistic involvement of Pt2+/Pt degrees and Ti4+/Ti3+ redox couples in addition to Ce4+/Ce3+ due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E-F is shown to be responsible for improved redox property and higher catalytic activity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved