48 resultados para Built heritage sites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We found that Pd(II) ion (M) and the smallest 120 bidentate donor pyrimidine (L-a) self-assemble into a mononuclear M(L-a)(4) complex (1a) instead of the expected smallest M-12(L-a)(24) molecular ball (1), presumably due to the weak coordination nature of the pyrimidine. To construct such a pyrimidine bridged nanoball, we employed a new donor tris(4-(pyrimidin-5-yl)phenyl)amine (L); which upon selective complexation with Pd(II) ions resulted in the formation of a pregnant M24L24 molecular nanoball (2) consisting of a pyrimidine-bridged Pd-12 baby-ball supported by a Pd-12 larger mother-ball. The formation of the baby-ball was not successful without the support of the mother-ball. Thus, we created an example of a self-assembly where the inner baby-ball resembling to the predicted M-12(L-a)(24) ball (1) was incarcerated by the giant outer mother-ball by means of geometrical constraints. Facile conversion of the pregnant ball 2 to a smaller M-12(L-b)(24) ball 3 with dipyridyl donor was achieved in a single step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants, herbivores and parasitoids affect each other directly and indirectly; however, feedback effects mediated by host plant traits have rarely been demonstrated in these tritrophic interactions. Brood-site pollination mutualisms (e.g. those involving figs and fig wasps) represent specialised tritrophic communities where the progeny of mutualistic pollinators and of non-mutualistic gallers (both herbivores) together with that of their parasitoids develop within enclosed inflorescences called syconia (hence termed brood-sites or microcosms). Plant reproductive phenology (which affects temporal brood-site availability) and inflorescence size (representing brood-site size) are plant traits that could affect reproductive resources, and hence relationships between trees, pollinators and non-pollinating wasps. Analysing wasp and seed contents of syconia, we examined direct, indirect, trophic and non-trophic relationships within the interaction web of the fig-fig wasp community of Ficus racemosa in the context of brood site size and availability. We demonstrate that in addition to direct resource competition and predator-prey (host-parasitoid) interactions, these communities display exploitative or apparent competition and trait-mediated indirect interactions. Inflorescence size and plant reproductive phenology impacted plant-herbivore and plant-parasitoid associations. These plant traits also influenced herbivore-herbivore and herbivore-parasitoid relationships via indirect effects. Most importantly, we found a reciprocal effect between within-tree reproductive asynchrony and fig wasp progeny abundances per syconium that drives a positive feedback cycle within the system. The impact of a multitrophic feedback cycle within a community built around a mutualistic core highlights the need for a holistic view of plant-herbivore-parasitoid interactions in the community ecology of mutualisms.