210 resultados para Biomimetic sensor
Resumo:
A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel microprocessor-based platinum resistance temperature indicator has been developed and described. This indicator provides a linear performance over a wide dynamic temperature range of - 183.0°C to +200°C with an accuracy of better than ±0.05°C. To sasily carry out the linearization of platinum thermometer through software, the modified Callendar-Van Dusen equation is used. Test results are given to support the theory.
Resumo:
This paper aims at describing a low‐temperature thermal sensor based on superconductor films which can be designed to have required variation of resistance with temperature through an appropriate geometry. Further, it has been shown that the temperature range can be varied to some extent by controlling the bias current.
Resumo:
We present a low-complexity algorithm for intrusion detection in the presence of clutter arising from wind-blown vegetation, using Passive Infra-Red (PIR) sensors in a Wireless Sensor Network (WSN). The algorithm is based on a combination of Haar Transform (HT) and Support-Vector-Machine (SVM) based training and was field tested in a network setting comprising of 15-20 sensing nodes. Also contained in this paper is a closed-form expression for the signal generated by an intruder moving at a constant velocity. It is shown how this expression can be exploited to determine the direction of motion information and the velocity of the intruder from the signals of three well-positioned sensors.
Resumo:
Biomimetics involves transfer from one or more biological examples to a technical system. This study addresses four questions. What are the essential steps in a biomimetic process? What is transferred? How can the transferred knowledge be structured in a way useful for biologists and engineers? Which guidelines can be given to support transfer in biomimetic design processes? In order to identify the essential steps involved in carrying out biomimetics, several procedures found in the literature were summarized, and four essential steps that are common across these procedures were identified. For identification of mechanisms for transfer, 20 biomimetic examples were collected and modeled according to a model. of causality called the SAPPhIRE model. These examples were then analyzed for identifying the underlying similarity between each biological and corresponding analogue technical system. Based on the SAPPhIRE model, four levels of abstraction at which transfer takes place were identified. Taking into account similarity, the biomimetic examples were assigned to the appropriate levels of abstraction of transfer. Based on the essential steps and the levels of transfer, guidelines for supporting transfer in biomimetic design were proposed and evaluated using design experiments. The 20 biological and analogue technical systems that were analyzed were similar in the physical effects used and at the most abstract levels of description of their functionality, but they were the least similar at the lowest levels of abstraction: the parts involved. Transfer most often was carried out at the physical effect level of abstraction. Compared to a generic set of guidelines based on the literature, the proposed guidelines improved design performance by about 60%. Further, the SAPPhIRE model turned out to be a useful representation for modeling complex biological systems and their functionality. Databases of biological systems, which are structured using the SAPPhIRE model, have the potential to aid biomimetic concept generation.
Resumo:
Many process-control systems are air-operated. In such an environment, it would be desirable and economical to use pneumatic sensors. Bubble-back pressure sensors perform quite satisfactorily, but in case of viscous inflammable and slurry-like liquids with a tendency to froth, this level sensor is inadequate. The method suggested in this paper utilizes a pneumatic capacitor, one boundary of which is formed by the liquid level, to modulate a fluid amplifier feedback oscillator. The absence of moving parts and economy obtained makes this method attractive for process-control applications. The system has been mathematically modeled and simulated on an IBM 360/44 digital computer. Experimental values compare fairly well with the theoretical results. For the range tested, the sensor is found to have a linear frequency variation with the liquid level Extended running in the laboratory shows that the system is very reliable. This system has been found insensitive to temperature variations of up to 15ðC.
Resumo:
In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved
Resumo:
A biomimetic total synthesis of bioactive tetracyclic natural product allomicrophyllone has been achieved in which a protective Diels-Alder reaction employing a disposable sacrificial 1,3-diene directs the regioselectivity of the subsequent Dials-Alder reaction. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.
Resumo:
Intracellular pathogen sensor, NOD2, has been implicated in regulation of wide range of anti-inflammatory responses critical during development of a diverse array of inflammatory diseases; however, underlying molecular details are still imprecisely understood. In this study, we demonstrate that NOD2 programs macrophages to trigger Notch1 signaling. Signaling perturbations or genetic approaches suggest signaling integration through cross-talk between Notch1-PI3K during the NOD2-triggered expression of a multitude of immunological parameters including COX-2/PGE(2) and IL-10. NOD2 stimulation enhanced active recruitment of CSL/RBP-Jk on the COX-2 promoter in vivo. Intriguingly, nitric oxide assumes critical importance in NOD2-mediated activation of Notch1 signaling as iNOS(-/-) macrophages exhibited compromised ability to execute NOD2-triggered Notch1 signaling responses. Correlative evidence demonstrates that this mechanism operates in vivo in brain and splenocytes derived from wild type, but not from iNOS(-/-) mice. Importantly, NOD2-driven activation of the Notch1-PI3K signaling axis contributes to its capacity to impart survival of macrophages against TNF-alpha or IFN-gamma-mediated apoptosis and resolution of inflammation. Current investigation identifies Notch1-PI3K as signaling cohorts involved in the NOD2-triggered expression of a battery of genes associated with anti-inflammatory functions. These findings serve as a paradigm to understand the pathogenesis of NOD2-associated inflammatory diseases and clearly pave a way toward development of novel therapeutics.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
We consider the problem of tracking an intruder in a plane region by using a wireless sensor network comprising motes equipped with passive infrared (PIR) sensors deployed over the region. An input-output model for the PIR sensor and a method to estimate the angular speed of the target from the sensor output are proposed. With the measurement model so obtained, we study the centralized and decentralized tracking performance using the extended Kalman filter.
Resumo:
We consider a wireless sensor network whose main function is to detect certain infrequent alarm events, and to forward alarm packets to a base station, using geographical forwarding. The nodes know their locations, and they sleep-wake cycle, waking up periodically but not synchronously. In this situation, when a node has a packet to forward to the sink, there is a trade-off between how long this node waits for a suitable neighbor to wake up and the progress the packet makes towards the sink once it is forwarded to this neighbor. Hence, in choosing a relay node, we consider the problem of minimizing average delay subject to a constraint on the average progress. By constraint relaxation, we formulate this next hop relay selection problem as a Markov decision process (MDP). The exact optimal solution (BF (Best Forward)) can be found, but is computationally intensive. Next, we consider a mathematically simplified model for which the optimal policy (SF (Simplified Forward)) turns out to be a simple one-step-look-ahead rule. Simulations show that SF is very close in performance to BF, even for reasonably small node density. We then study the end-to-end performance of SF in comparison with two extremal policies: Max Forward (MF) and First Forward (FF), and an end-to-end delay minimising policy proposed by Kim et al. 1]. We find that, with appropriate choice of one hop average progress constraint, SF can be tuned to provide a favorable trade-off between end-to-end packet delay and the number of hops in the forwarding path.
Resumo:
Excitation energy migration followed by electron transfer forms the main components of natural photosynthesis. An understanding of these aspects is essential to reenact the primary processes in laboratory under conditions that are precisely repeatable. Here we describe the state of understanding of the natural process and several model systems designed to harvest solar energy and conversion to useful form of chemical energy. The molecular assemblies constituting the model systems offer a great advantage in terms of better comprehension of the mechanistic aspects and yield valuable information on the design of molecular photonic devices.