90 resultados para Biomechanical engineering
Resumo:
2- and 5-methylresorcinol form co-crystals with 4,4'-bipyridine in which some of the bipyridine molecules are loosely bound. These molecules can be replaced with other molecules of a similar shape and size to give a general method for the engineering of a ternary co-crystal.
Resumo:
Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.
Resumo:
Phenylboronic acids can exist, in principle, in three different conformers (syn,syn; syn,anti and anti,anti) with distinct energy profiles. In their native state, these compounds prefer the energetically favored syn, anti-conformation. In molecular complexes, however, the functionality exhibits conformational diversity. In this paper we report a series of co-crystals, with N-donor compounds, prepared by a design strategy involving the synthons based on the syn, syn-conformation of the boronic acid functionality. For this purpose, we employed compounds with the 1,2-diazo fragment (alprazolam, 1H-tetrazole, acetazolamide and benzotriazole), 1,10-phenanthroline and 2,2'-bipyridine for the co-crystallization experiments. However, our study shows that the mere presence of the 1,2-diazo fragment in the coformer does not guarantee the successful formation of co-crystals with a syn, syn-conformation of the boronic acid. [GRAPHICS] The -B(OH)(2) fragment makes unsymmetrical O-H center dot center dot center dot N heterosynthons with alprazolam (ALP) and 1,10-phenanthroline (PHEN). In the co-crystals of phenylboronic acids with 1H-tetrazole (TETR) and 2,2'-bipyridine (BPY), the symmetrical boronic acid dimer is the major synthon. In the BPY complex, boronic acid forms linear chains and the pyridine compound interacts with the lateral OH of boronic acid dimers that acts as a connector, thus forming a ladder structure. In the TETR complex, each heterocycle interacts with three boronic acids. While two boronic acids interact using the phenolic group, the third molecule generates O-H center dot center dot center dot N hydrogen bonds using the extra OH group, of -B(OH)(2) fragment, left after the dimer formation. Thus, although molecules were selected retrosynthetically with the 1,2-diazo fragment or with nearby hetero-atoms to induce co-crystal formation using the syn,syn-orientation of the -B(OH)(2) functionality, co-crystal formation is in fact selective and is probably driven by energy factors. Acetazolamide (ACET) contains self-complementary functional groups and hence creates stable homosynthons. Phenylboronic acids being weak competitors fail to perturb the homosynthons and hence the components crystallize separately. Therefore, besides the availability of possible hydrogen bond acceptors in the required position and orientation, the ability of the phenyl-boronic acid to perturb the existing interactions is also a prerequisite to form co-crystals. This is illustrated in the table below. In the case of ALP, PHEN and BPY, the native structures are stabilized by weak interactions and may be influenced by the boronic acid fragment. Thus phenylboronic acids can attain co-crystals with those compounds, wherein the cyclic O-H center dot center dot center dot N hydrogen bonds are stronger than the individual homo-interactions. This can lower the lattice energy of the molecular complex as compared with the individual crystals. [GRAPHICS] Phenylboronic acids show some selectivity in the formation of co-crystals with N-heterocycles. The differences in solubility of the components fall short to provide a possible reason for the selective formation of co-crystals only with certain compounds. These compounds, being weak acids, do not follow the Delta pK(a) analysis and hence fail to provide any conclusive observation. Theoretical results show that of the three conformers possible, the syn,anti conformer is the most stable. The relative stabilities of the three conformers syn,anti,syn,syn and anti,anti are 0.0, 2.18 and 3.14 kcal/mol, respectively. The theoretical calculations corroborate the fact that only energetically favorable synthons can induce the formation of heterosynthons, as in ALP and PHEN complexes. From a theoretical and structural analysis it is seen that phenylboronic acids will form interactions with those molecules wherein the heterocyclic and acidic fragments can interrupt the homosynthons. However, the energy profile is shallow and can be perturbed easily by the presence of competing functional groups (such as OH and COOH) in the vicinity. [GRAPHICS] .
Resumo:
The questions that one should answer in engineering computations - deterministic, probabilistic/randomized, as well as heuristic - are (i) how good the computed results/outputs are and (ii) how much the cost in terms of amount of computation and the amount of storage utilized in getting the outputs is. The absolutely errorfree quantities as well as the completely errorless computations done in a natural process can never be captured by any means that we have at our disposal. While the computations including the input real quantities in nature/natural processes are exact, all the computations that we do using a digital computer or are carried out in an embedded form are never exact. The input data for such computations are also never exact because any measuring instrument has inherent error of a fixed order associated with it and this error, as a matter of hypothesis and not as a matter of assumption, is not less than 0.005 per cent. Here by error we imply relative error bounds. The fact that exact error is never known under any circumstances and any context implies that the term error is nothing but error-bounds. Further, in engineering computations, it is the relative error or, equivalently, the relative error-bounds (and not the absolute error) which is supremely important in providing us the information regarding the quality of the results/outputs. Another important fact is that inconsistency and/or near-consistency in nature, i.e., in problems created from nature is completely nonexistent while in our modelling of the natural problems we may introduce inconsistency or near-inconsistency due to human error or due to inherent non-removable error associated with any measuring device or due to assumptions introduced to make the problem solvable or more easily solvable in practice. Thus if we discover any inconsistency or possibly any near-inconsistency in a mathematical model, it is certainly due to any or all of the three foregoing factors. We do, however, go ahead to solve such inconsistent/near-consistent problems and do get results that could be useful in real-world situations. The talk considers several deterministic, probabilistic, and heuristic algorithms in numerical optimisation, other numerical and statistical computations, and in PAC (probably approximately correct) learning models. It highlights the quality of the results/outputs through specifying relative error-bounds along with the associated confidence level, and the cost, viz., amount of computations and that of storage through complexity. It points out the limitation in error-free computations (wherever possible, i.e., where the number of arithmetic operations is finite and is known a priori) as well as in the usage of interval arithmetic. Further, the interdependence among the error, the confidence, and the cost is discussed.
Resumo:
The idea of a structural landscape is based on the fact that a large number of crystal structures can be associated with a particular organic molecule. Taken together, all these structures constitute the landscape. The landscape includes polymorphs, pseudopolymorphs and solvates. Under certain circumstances, it may also include multicomponent crystals (or co-crystals) that contain the reference molecule as one of the components. Under still other circumstances, the landscape may include the crystal structures of molecules that are closely related to the reference molecule. The idea of a landscape is to facilitate the understanding of the process of crystallization. It includes all minima that can, in principle, be accessed by the molecule in question as it traverses the path from solution to the crystal. Isonicotinamide is a molecule that is known to form many co-crystals. We report here a 2 : 1 co-crystal of this amide with 3,5-dinitrobenzoic acid, wherein an unusual N-H center dot center dot center dot N hydrogen-bonded pattern is observed. This crystal structure offers some hints about the recognition processes between molecules that might be implicated during crystallization. Also included is a review of other recent results that illustrate the concept of the structural landscape.
Resumo:
The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.
Resumo:
Over the years, crystal engineering has transformed into a mature and multidisciplinary subject. New understanding, challenges, and opportunities have emerged in the design of complex structures and structure-property evaluation. Revolutionary pathways adopted by many leaders have shaped and directed this subject. In this short essay to celebrate the 60th birthday of Prof. Gautam R. Desiraju, we, his current research group members, contemplate the development of some of the topics explored by our group in the context of the overall subject. These topics, though not entirely new, are of significant interest to the crystal engineering community.
Resumo:
CAELinux is a Linux distribution which is bundled with free software packages related to Computer Aided Engineering (CAE). The free software packages include software that can build a three dimensional solid model, programs that can mesh a geometry, software for carrying out Finite Element Analysis (FEA), programs that can carry out image processing etc. Present work has two goals: 1) To give a brief description of CAELinux 2) To demonstrate that CAELinux could be useful for Computer Aided Engineering, using an example of the three dimensional reconstruction of a pig liver from a stack of CT-scan images. One can note that instead of using CAELinux, using commercial software for reconstructing the liver would cost a lot of money. One can also note that CAELinux is a free and open source operating system and all software packages that are included in the operating system are also free. Hence one can conclude that CAELinux could be a very useful tool in application areas like surgical simulation which require three dimensional reconstructions of biological organs. Also, one can see that CAELinux could be a very useful tool for Computer Aided Engineering, in general.
Resumo:
Super-resolution imaging techniques are of paramount interest for applications in bioimaging and fluorescence microscopy. Recent advances in bioimaging demand application-tailored point spread functions. Here, we present some approaches for generating application-tailored point spread functions along with fast imaging capabilities. Aperture engineering techniques provide interesting solutions for obtaining desired system point spread functions. Specially designed spatial filters—realized by optical mask—are outlined both in a single-lens and 4Pi configuration. Applications include depth imaging, multifocal imaging, and super-resolution imaging. Such an approach is suitable for fruitful integration with most existing state-of-art imaging microscopy modalities.
Resumo:
Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.
Resumo:
There are many biomechanical challenges that a female insect must meet to successfully oviposit and ensure her evolutionary success. These begin with selection of a suitable substrate through which the ovipositor must penetrate without itself buckling or fracturing. The second phase corresponds to steering and manipulating the ovipositor to deliver eggs at desired locations. Finally, the insect must retract her ovipositor fast to avoid possible predation and repeat this process multiple times during her lifetime. From a materials perspective, insect oviposition is a fascinating problem and poses many questions. Specifically, are there diverse mechanisms that insects use to drill through hard substrates without itself buckling or fracturing? What are the structure-property relationships in the ovipositor material? These are some of the questions we address with a model system consisting of a parasitoid fig wasp - fig substrate system. To characterize the structure of ovipositors, we use scanning electron microscopy with a detector to quantify the presence of transition elements. Our results show that parasitoid ovipositors have teeth like structures on their tips and contain high amounts of zinc as compared to remote regions. Sensillae are present along the ovipositor to aid detection of chemical species and mechanical deformations. To quantify the material properties of parasitoid ovipositors, we use an atomic force microscope and show that tip regions have higher modulus as compared to remote regions. Finally, we use videography to show that ovipositors buckle during oviposition and estimate the forces needed to cause substrate boring based on Euler buckling analysis. Such methods may be useful for the design of functionally graded surgical tools.
Resumo:
Bare faceted gold nanoparticles (AuNPs) have a tendency to aggregate through a preferred attachment of the 111] surfaces. We have used fully atomistic classical molecular dynamics simulations to obtain a quantitative estimate of this surface interaction using umbrella sampling (US) at various temperatures. To tune this surface interaction, we use polyamidoamine (PAMAM) dendrimer to coat the gold surface under various conditions. We observe a spontaneous adsorption of the protonated as well as nonprotonated PAMAM dendrimer on the AuNP surface. The adsorbed dendrimer on the nanoparticle surface strongly alters the interaction between the nanoparticles. We calculate the interaction between dendrimercoated AuNPs using US and show how the interaction between two bare faceted AuNPs can be tuned as a function of dendrimer concentration and charge (pH dependent) With appropriate choice of the dendrimer concentration and charge, two strongly interacting AuNPs can be made effectively noninteracting. Our simulation results demonstrate a strategy to tune the nanoparticle interaction, which can help in engineering self-assembly of such nanoparticles.
Resumo:
The fabrication of tissue engineering scaffolds necessitates amalgamation of a multitude of attributes including a desirable porosity to encourage vascular invasion, desired surface chemistry for controlled deposition of calcium phosphate-based mineral as well as ability to support attachment, proliferation, and differentiation of lineage specific progenitor cells. Scaffold fabrication often includes additional surface treatments to bring about desired changes in the surface chemistry. In this perspective, this review documents the important natural and synthetic scaffolds fabricated for bone tissue engineering applications in tandem with the surface treatment techniques to maneuver the biocompatibility of engineered scaffolds. This review begins with a discussion on the fundamental concepts related to biocompatibility as well as the characteristics of the biological micro-environment. The primary focus is to discuss the effects of surface micro/nano patterning on the modulation of bone cell response. Apart from reviewing a host of experimental studies reporting the functionality of osteoblast-like bone cells and stem cells on surface modified or textured bioceramic/biopolymer scaffolds, theoretical insights to predict cell behavior on a scaffold with different topographical features are also briefly analyzed.