130 resultados para Beer Residues
Resumo:
Dephosphocoenzyme A kinase performs the transfer of the c-phosphate of ATP to dephosphocoenzyme A, catalyzing the last step of coenzyme A biosynthesis. This enzyme belongs to the P-loop-containing NTP hydrolase superfamily, all members of which posses a three domain topology consisting of a CoA domain that binds the acceptor substrate, the nucleotide binding domain and the lid domain. Differences in the enzymatic organization and regulation between the human and mycobacterial counterparts, have pointed out the tubercular CoaE as a high confidence drug target (HAMAP database). Unfortunately the absence of a three-dimensional crystal structure of the enzyme, either alone or complexed with either of its substrates/regulators, leaves both the reaction mechanism unidentified and the chief players involved in substrate binding, stabilization and catalysis unknown. Based on homology modeling and sequence analysis, we chose residues in the three functional domains of the enzyme to assess their contributions to ligand binding and catalysis using site-directed mutagenesis. Systematically mutating the residues from the P-loop and the nucleotide-binding site identified Lys14 and Arg140 in ATP binding and the stabilization of the phosphoryl intermediate during the phosphotransfer reaction. Mutagenesis of Asp32 and Arg140 showed catalytic efficiencies less than 5-10% of the wild type, indicating the pivotal roles played by these residues in catalysis. Non-conservative substitution of the Leu114 residue identifies this leucine as the critical residue from the hydrophobic cleft involved in leading substrate, DCoA binding. We show that the mycobacterial enzyme requires the Mg2+ for its catalytic activity. The binding energetics of the interactions of the mutant enzymes with the substrates were characterized in terms of their enthalpic and entropic contributions by ITC, providing a complete picture of the effects of the mutations on activity. The properties of mutants defective in substrate recognition were consistent with the ordered sequential mechanism of substrate addition for CoaE.
Resumo:
The results of the structural and conformational studies carried out using C-13 CPMAS NMR technique on several glycine and alanine containing peptides in the solid state are reported. The study demonstrates the effects of variations in C-13 chemical shifts due to conformation and hydrogen bonding. The possibility of applying this technique to obtain insight into the conformational characteristics of peptides of unknown structures is discussed.
Resumo:
The apicoplast of Plasmodium harbors several metabolic pathways. The enzymes required to perform these reactions are all nuclearly encoded and apicoplast targeted (NEAT) proteins. Plasmodium falciparum Enoyl-ACP Reductase (PfENR) is one such NEAT protein. The NEAT proteins have a transit peptide which is required for crossing the membranes of apicoplast. We studied the importance of basic residues like Arginine and Lysine within the transit peptide. Previous studies have suggested that all basic residues are essential for apicoplast trafficking. In this study, we demonstrate that only some of these residues are essential (K44, R48, K51, and R52), whereas others are dispensable (R40, K42, and K49). On mutating these specific residues, PfENR is not imported into the apicoplast and is mislocalized to the cytoplasm. We also demonstrate that these residues are also crucial for interaction with Hsp70-1, implying that interactions of Lysine 44, Arginine 48, Lysine 51, and Arginine 52 of the transit peptide with PfHsp70-1 are required for apicoplast trafficking. 15-Deoxyspergualin, which has earlier been proposed to interact with EEVD motif of PfHsp70-1 hinders the physical interaction between these cationic residues of PfENR and Hsp70-1. Hence, we propose that in the transport competent state of NEAT proteins some specific positively charged amino acids in the transit peptide interact with PfHsp70-1, and this interaction is essential for apicoplast targeting.
Resumo:
Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.
Resumo:
Transient protein-protein interactions play crucial roles in all facets of cellular physiology. Here, using an analysis on known 3-D structures of transient protein-protein complexes, their corresponding uncomplexed forms and energy calculations we seek to understand the roles of protein-protein interfacial residues in the unbound forms. We show that there are conformationally near invariant and evolutionarily conserved interfacial residues which are rigid and they account for similar to 65% of the core interface. Interestingly, some of these residues contribute significantly to the stabilization of the interface structure in the uncomplexed form. Such residues have strong energetic basis to perform dual roles of stabilizing the structure of the uncomplexed form as well as the complex once formed while they maintain their rigid nature throughout. This feature is evolutionarily well conserved at both the structural and sequence levels. We believe this analysis has general bearing in the prediction of interfaces and understanding molecular recognition.
Resumo:
A cylindrical pore of similar to 7.5 angstrom diameter containing a one-dimensional water wire, within the confines of a hydrophobic channel lined with the valine side chain, has been observed in crystals of the peptide Boc-D-Pro-Aib-Val-Aib-Val-OMe (1) (Raghavender et al., 2009, 2010). The synthesis and structural characterization in crystals of three backbone homologated analogues Boc-D-Pro-Aib-beta(3)(R) Val-Aib-Val-OMe (2), Boc-D-Pro-Aib-gamma(4)(R)Val-Aib-Val-OMe (3), Boc-D-Pro-Aib-gamma(4)(S)Val-Aib-Val-OMe (4) are described. Crystal structures of peptides 2, 3 and 4 reveal close-packed arrangements in which no pore was formed. In peptides 2 and 3 the N-terminus D-Pro-Aib segment adopted conformations closely related to Type II' beta-turns, while residues 2-4 form one turn of an alpha beta right-handed C-11 helix in 2 and an alpha gamma C-12 helix in 3. In peptide 4, a continuous left-handed helical structure was observed with the D-Pro-Aib segment forming a Type III' beta-turn, followed by one turn of a left-handed alpha gamma C-12 helix. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The effect of gem-dialkyl substituents on the backbone conformations of beta-amino acid residues in peptides has been investigated by using four model peptides: Boc-Xxx-beta 2,2Ac6c(1-aminomethylcyclohexanecarboxylic acid)-NHMe (Xxx=Leu (1), Phe (2); Boc=tert-butyloxycarbonyl) and Boc-Xxx-beta 3,3Ac6c(1-aminocyclohexaneacetic acid)-NHMe (Xxx=Leu (3), Phe (4)). Tetrasubstituted carbon atoms restrict the ranges of stereochemically allowed conformations about flanking single bonds. The crystal structure of Boc-Leu-beta 2,2Ac6c-NHMe (1) established a C11 hydrogen-bonded turn in the a beta-hybrid sequence. The observed torsion angles (a(similar to-60 degrees, similar to-30 degrees), beta(similar to-90 degrees, similar to 60 degrees, similar to-90 degrees)) corresponded to a C11 helical turn, which was a backbone-expanded analogue of the type III beta turn in aa sequences. The crystal structure of the peptide Boc-Phe-beta 3,3Ac6c-NHMe (4) established a C11 hydrogen-bonded turn with distinctly different backbone torsion angles (a(similar to-60 degrees, similar to 120 degrees), beta(similar to 60 degrees, ?60 degrees, similar to-60 degrees)), which corresponded to a backbone-expanded analogue of the type II beta turn observed in aa sequences. In peptide 4, the two molecules in the asymmetric unit adopted backbone torsion angles of opposite signs. In one of the molecules, the Phe residue adopted an unfavorable backbone conformation, with the energetic penalty being offset by a favorable aromatic interaction between proximal molecules in the crystal. NMR spectroscopy studies provided evidence for the maintenance of folded structures in solution in these a beta-hybrid sequences.
Resumo:
Residue depth accurately measures burial and parameterizes local protein environment. Depth is the distance of any atom/residue to the closest bulk water. We consider the non-bulk waters to occupy cavities, whose volumes are determined using a Voronoi procedure. Our estimation of cavity sizes is statistically superior to estimates made by CASTp and VOIDOO, and on par with McVol over a data set of 40 cavities. Our calculated cavity volumes correlated best with the experimentally determined destabilization of 34 mutants from five proteins. Some of the cavities identified are capable of binding small molecule ligands. In this study, we have enhanced our depth-based predictions of binding sites by including evolutionary information. We have demonstrated that on a database (LigASite) of similar to 200 proteins, we perform on par with ConCavity and better than MetaPocket 2.0. Our predictions, while less sensitive, are more specific and precise. Finally, we use depth (and other features) to predict pK(a)s of GLU, ASP, LYS and HIS residues. Our results produce an average error of just <1 pH unit over 60 predictions. Our simple empirical method is statistically on par with two and superior to three other methods while inferior to only one. The DEPTH server (http://mspc.bii.a-star.edu.sg/depth/) is an ideal tool for rapid yet accurate structural analyses of protein structures.
Resumo:
Diaminopropionate ammonialyase (DAPAL), a fold-typeII pyridoxal 5-phosphate-dependent enzyme, catalyzes the ,-elimination of diaminopropionate (DAP) to pyruvate and ammonia. DAPAL was able to utilize both d- and l-DAP as substrates with almost equal efficiency. Mutational analysis of functionally important residues such as Thr385, Asp125 and Asp194 was carried out to understand the mechanism by which the isomers are hydrolyzed. Further, the putative residues involved in the formation of disulfide bond Cys271 and Cys299 were also mutated. T385S, T385D sDAPAL were as active with dl-DAP as substrate as sDAPAL, whereas the later exhibited a threefold increase in catalytic efficiency with d-Ser as substrate. Further analysis of these mutants suggested that DAPAL might follow an anti-E-2 mechanism of catalysis that does not involve the formation of a quinonoid intermediate. Of the two mutants of Asp125, D125E showed complete loss of activity with d-DAP as substrate, whereas the reaction with l-DAP was not affected significantly, demonstrating that Asp125 was essential for abstraction of protons from the d-isomer. By contrast, mutational analysis of Asp194 showed that the residue may not be directly involved in proton abstraction from l-DAP. sDAPAL does not form a disulfide bond in solution, although the position of Cys299 and Cys271 in the modeled structure of sDAPAL favored the formation of a disulfide bond. Further, unlike eDAPAL, sDAPAL could be activated by monovalent cations. Mutation of the cysteine residues showed that Cys271 may be involved in coordinating the monovalent cation, as observed in the case of other fold-typeII enzymes.