50 resultados para B-Riesz Potential
Resumo:
DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation. Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of BPTQ with DNA. Cytotoxicity was studied by performing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assay. Further, cell cycle analysis by flow cytometry, annexin V staining, mitochondrial membrane potential assay, DNA fragmentation, and western blot analysis were used to elucidate the mechanism of action of BPTQ at the cellular level. Spectral, topological, and docking studies confirmed that BPTQ is a typical intercalator of DNA. BPTQ induces dose-dependent inhibitory effect on the proliferation of cancer cells by arresting cells at S and G2/M phase. Further, BPTQ activates the mitochondria-mediated apoptosis pathway, as explicated by a decrease in mitochondrial membrane potential, increase in the Bax:Bcl-2 ratio, and activation of caspases. These results confirmed that BPTQ is a DNA intercalative anticancer molecule, which could aid in the development of future cancer therapeutic agents.
Resumo:
This paper reports the dynamic compression behavior of ultrafine grained (Hf, Zr)B-2-SiC composites, sintered using reactive spark plasma sintering at 1600 degrees C for 10 min. Dynamic strength of similar to 2.3 GPa has been measured using Split Hopkinson Pressure Bar (SHPB) tests in a reproducible manner at strain rates of 800-1300 s(-1). A comparison with competing boride based armor ceramics, in reference to the spectrum of properties evaluated, establishes the potential of (Hf, Zr)B-2-SiC composites for armor applications. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Polycyclic aromatic molecules such as ellipticine intercalate into double-stranded DNA and interfere with physiological functions. In the present study, we evaluate the chemotherapeutic potential of MPTQ on animal models and its mode of action. In order to test the antitumor activity, monohydrochloride of MPTQ was orally administered in mice bearing tumor. Results showed a significant inhibition of tumor growth compared to that of untreated controls. More importantly, mean lifespan of tumor bearing animals treated with MPTQ was significantly higher as compared to that of untreated tumor bearing mice suggesting that the treatment affected viability of cancerous cells, but not of normal cells. Consistent with this, we find that administration of MPTQ to normal mice did not cause any major side effects as observed upon hematological and serum profiling. We also found that MPTQ induces cytotoxicity in cancer cell lines, by activating apoptosis both by intrinsic and extrinsic pathways. Thus, MPTQ could be used as a potential cancer therapeutic agent. (c) 2011 Wiley Periodicals, Inc.
Resumo:
The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 mu m) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 mu m). Particles smaller than 0.8 mu m (at aerodynamic size) constitute similar to 99% of all particles in winter and similar to 90% of particles in summer season. However, particles greater than 2 mu m contribute similar to 3% and similar to 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from That Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 pm is the key contributor in winter for higher ANC. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.