110 resultados para Averaging operators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the approximate analysis of non-linear non-conservative systems oftwo degrees of freedom subjected to step-function excitation. The method of averaging of Krylov and Bogoliubov is used to arrive at the approximate equations for amplitude and phase. An example of a spring-mass-damper system is presented to illustrate the method and a comparison with numerical results brings out the validity of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with an approximate method of analysis of non-linear, non-conservative systems of two degrees of freedom. The approximate equations for amplitude and phase are obtained by a generalized averaging technique based on the ultraspherical polynomial approximation. The method is illustrated by an example of a spring-mass-damper system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the Krylov-Bogoliubov-Mitropolskii-Popov asymptotic method is used to determine the transient response of third-order non-linear systems. Instead of averaging the non-linear functions over a cycle, they are expanded in ultraspherical polynomials and the constant term is retained. The resulting equations are solved to obtain the approximate solution. A numerical example is considered and the approximate solution is compared with the digital solution. The results show that there is good agreement between the two values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrologic impacts of climate change are usually assessed by downscaling the General Circulation Model (GCM) output of large-scale climate variables to local-scale hydrologic variables. Such an assessment is characterized by uncertainty resulting from the ensembles of projections generated with multiple GCMs, which is known as intermodel or GCM uncertainty. Ensemble averaging with the assignment of weights to GCMs based on model evaluation is one of the methods to address such uncertainty and is used in the present study for regional-scale impact assessment. GCM outputs of large-scale climate variables are downscaled to subdivisional-scale monsoon rainfall. Weights are assigned to the GCMs on the basis of model performance and model convergence, which are evaluated with the Cumulative Distribution Functions (CDFs) generated from the downscaled GCM output (for both 20th Century [20C3M] and future scenarios) and observed data. Ensemble averaging approach, with the assignment of weights to GCMs, is characterized by the uncertainty caused by partial ignorance, which stems from nonavailability of the outputs of some of the GCMs for a few scenarios (in Intergovernmental Panel on Climate Change [IPCC] data distribution center for Assessment Report 4 [AR4]). This uncertainty is modeled with imprecise probability, i.e., the probability being represented as an interval gray number. Furthermore, the CDF generated with one GCM is entirely different from that with another and therefore the use of multiple GCMs results in a band of CDFs. Representing this band of CDFs with a single valued weighted mean CDF may be misleading. Such a band of CDFs can only be represented with an envelope that contains all the CDFs generated with a number of GCMs. Imprecise CDF represents such an envelope, which not only contains the CDFs generated with all the available GCMs but also to an extent accounts for the uncertainty resulting from the missing GCM output. This concept of imprecise probability is also validated in the present study. The imprecise CDFs of monsoon rainfall are derived for three 30-year time slices, 2020s, 2050s and 2080s, with A1B, A2 and B1 scenarios. The model is demonstrated with the prediction of monsoon rainfall in Orissa meteorological subdivision, which shows a possible decreasing trend in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large amplitude oscillations of cantilevered beams of variable cross-section, with concentrated masses along the span, are studied in this paper. The governing non-linear ordinary differential equation is solved by an averaging technique to obtain approximate solutions. Stability boundaries of the response are also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The positivity of operators in Hilbert spaces is an important concept finding wide application in various branches of Mathematical System Theory. A frequency- domain condition that ensures the positivity of time-varying operators in L2 with a state-space description, is derived in this paper by using certain newly developed inequalities concerning the input-state relation of such operators. As an interesting application of these results, an L2 stability criterion for time-varying feedback systems consisting of a finite-sector non-linearity is also developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the method of operators of multiple scales, two coupled nonlinear equations are derived, which govern the slow amplitude modulation of surface gravity waves in two space dimensions. The equations of Davey and Stewartson, which also govern the two-dimensional modulation of the amplitude of gravity waves, are derived as a special case of our equations. For a fully dispersed wave, symmetric about a point which moves with the group velocity, the coupled equations reduce to a nonlinear Schrödinger equation with extra terms representing the effect of the curvature of the wavefront.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rheological properties of polymer melts and other complex macromolecular fluids are often successfully modeled by phenomenological constitutive equations containing fractional differential operators. We suggest a molecular basis for such fractional equations in terms of the generalized Langevin equation (GLE) that underlies the renormalized Rouse model developed by Schweizer [J. Chem. Phys. 91, 5802 (1989)]. The GLE describes the dynamics of the segments of a tagged chain under the action of random forces originating in the fast fluctuations of the surrounding polymer matrix. By representing these random forces as fractional Gaussian noise, and transforming the GLE into an equivalent diffusion equation for the density of the tagged chain segments, we obtain an analytical expression for the dynamic shear relaxation modulus G(t), which we then show decays as a power law in time. This power-law relaxation is the root of fractional viscoelastic behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the machining condition optimization models presented in earlier studies. Finding the optimal combination of machining conditions within the constraints is a difficult task. Hence, in earlier studies standard optimization methods are used. The non-linear nature of the objective function, and the constraints that need to be satisfied makes it difficult to use the standard optimization methods for the solution. In this paper, we present a real coded genetic algorithm (RCGA), to find the optimal combination of machining conditions. We present various issues related to real coded genetic algorithm such as solution representation, crossover operators, and repair algorithm in detail. We also present the results obtained for these models using real coded genetic algorithm and discuss the advantages of using real coded genetic algorithm for these problems. From the results obtained, we conclude that real coded genetic algorithm is reliable and accurate for solving the machining condition optimization models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.