84 resultados para Atrina vexillum, shell height


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the results of the measurement of the Marine Boundary Layer (MBL) height from spectral analysis of the u and v components of the wind and from CLASS/radiosonde temperature profiles. The data were collected on ORV Sagar Kanya during the pre-INDOEX (27 December 1996 through 31 January 1997) and FFP-98 (18 February to 31 March 1998) over the latitude range 15 degrees N to 14 degrees S and 15 degrees N to 20 degrees S respectively. During the pre-INDOEX, the MBL heights gradually decrease from 2.5 km at 13 degrees N to around 500 to 600 m at 10 degrees S, Similar results are observed in the return track. The MBL heights (0.5 to 1 km) obtained during FFP-98 are less compared to those obtained during pre-INDOEX. The MBL heights during FFP-98 are less compared to the pre-INDOEX and are believed to be due to the presence of stratus, stratocumulus and cumulus clouds during the cruise period, compared to a relatively cloud free pre-INDOEX cruise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical transport properties of InN/GaN heterostructure based Schottky junctions were studied over a wide temperature range of 200-500 K. The barrier height and the ideality factor were calculated from current-voltage (I-V) characteristics based on thermionic emission (TE), and found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The observed temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. Such inhomogeneous behavior was modeled by assuming the existence of a Gaussian distribution of barrier heights at the heterostructure interface. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloids of silver and palladium nanoparticles have been prepared by the Solvated Metal Atom Dispersion method. The as-prepared Ag colloid consisting of polydisperse nanoparticles is transformed into a monodisperse colloid by the digestive ripening process which involves refluxing the as-prepared colloid in the presence of a surfactant. In addition to the monodisperse nanoparticles, a small amount of an Ag-thiolate complex is also formed. Refluxing a mixture of the as-prepared Ag and Pd colloids results in Ag@Pd core-shell nanoparticles. The core-shell structure has been established using a combination of techniques such as UV-visible spectroscopy, high resolution electron microscopy, energy filtered electron microscopy, energy dispersive X-ray analysis, high angle annular dark field imaging and powder X-ray diffraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-component self-assembly of a cis-blocked 90 degrees Pd(II) acceptor with a mixture of a tetraimidazole and a linear dipyridyl donor self-discriminated into unusual Pd-8 molecular swing (1) and Pd-6 molecular boat (2), which are characterized by single-crystal X-ray diffraction analysis; their ability to bind C-60 in solution is established by fluorescence titration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an ultrasonic wave propagation analysis in single-walled carbon nanotube (SWCNT) is re-studied using nonlocal elasticity theory, to capture the whole behaviour. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The revisited nonlocal elasticity calculation shows that the wavenumber tends to infinite at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. This frequency is termed as escape frequency. This behavior is observed only for axial and radial waves in SWCNT. It has been shown that the circumferential waves will propagate dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the explicit expressions of cut-off frequency depend on the nonlocal scaling parameter and the axial wavenumber. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTs is also discussed. The present results are compared with the corresponding results (for first mode) obtained from ab initio and 3-D elastodynamic continuum models. The acoustic phonon dispersion relation predicted by the present model is in good agreement with that obtained from literature. The results are new and can provide useful guidance for the study and design of the next generation of nanodevices that make use of the wave propagation properties of single-walled carbon nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo I fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flugge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are, the analytical expressions obtained from the five theories allow one to see how these differences propagate into the asymptotic expansions. Also, they help to quantify the difference between the theories for a wide range of parameter values such as the frequency range, circumferential order, thickness ratio of the shell, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@ AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, the currentvoltage (IV) characteristics of Au/GaN Schottky diodes have been carried out in the temperature range of 300510?K. The estimated values of the Schottky-barrier height (SBH) and the ideality factor of the diodes based on the thermionic emission (TE) mechanism were found to be temperature dependent. The barrier height was found to increase and the ideality factor to decrease with increasing temperature. The conventional Richardson plot of ln(Is/T2) versus 1/kT gives the SBH of 0.51?eV and Richardson constant value of 3.23?X?10-5?A?cm-2?K-2 which is much lower than the known value of 26.4?A?cm-2?K-2 for GaN. Such discrepancies of the SBH and Richardson constant value were attributed to the existence of barrier-height inhomogeneities at the Au/GaN interface. The modified Richardson plot of ln(Is/T2)q2 sigma 2/2k2T2 versus q/kT, by assuming a Gaussian distribution of barrier heights at the Au/GaN interface, provided the SBH of 1.47?eV and Richardson constant value of 38.8?A?cm-2?K-2. The temperature dependence of the barrier height is interpreted on the basis of existence of the Gaussian distribution of the barrier heights due to the barrier-height inhomogeneities at the Au/GaN interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state-filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photogenerated carrier density. Independent experimental results on crystalline silicon-on-sapphire (SOS) help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single-beam z-scan nonlinear transmission experiments at 1.57 eV in both open- and close-aperture configurations yield two-photon absorption coefficient beta (similar to 3 cm/GW) and nonlinear refraction coefficient gamma (-2.5 x 10 (-aEuro parts per thousand 4) cm(2)/GW).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter mu. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter epsilon, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting epsilon = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (epsilon << 1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter mu. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).