138 resultados para Applied Mathematics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a variant of the popular matching problem here. The input instance is a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$, where vertices in $\mathcal{A}$ are called applicants and vertices in $\mathcal{P}$ are called posts. Each applicant ranks a subset of posts in an order of preference, possibly involving ties. A matching $M$ is popular if there is no other matching $M'$ such that the number of applicants who prefer their partners in $M'$ to $M$ exceeds the number of applicants who prefer their partners in $M$ to $M'$. However, the “more popular than” relation is not transitive; hence this relation is not a partial order, and thus there need not be a maximal element here. Indeed, there are simple instances that do not admit popular matchings. The questions of whether an input instance $G$ admits a popular matching and how to compute one if it exists were studied earlier by Abraham et al. Here we study reachability questions among matchings in $G$, assuming that $G=(\mathcal{A}\cup\mathcal{P},E)$ admits a popular matching. A matching $M_k$ is reachable from $M_0$ if there is a sequence of matchings $\langle M_0,M_1,\dots,M_k\rangle$ such that each matching is more popular than its predecessor. Such a sequence is called a length-$k$ voting path from $M_0$ to $M_k$. We show an interesting property of reachability among matchings in $G$: there is always a voting path of length at most 2 from any matching to some popular matching. Given a bipartite graph $G=(\mathcal{A}\cup\mathcal{P},E)$ with $n$ vertices and $m$ edges and any matching $M_0$ in $G$, we give an $O(m\sqrt{n})$ algorithm to compute a shortest-length voting path from $M_0$ to a popular matching; when preference lists are strictly ordered, we have an $O(m+n)$ algorithm. This problem has applications in dynamic matching markets, where applicants and posts can enter and leave the market, and applicants can also change their preferences arbitrarily. After any change, the current matching may no longer be popular, in which case we are required to update it. However, our model demands that we switch from one matching to another only if there is consensus among the applicants to agree to the switch. Hence we need to update via a voting path that ends in a popular matching. Thus our algorithm has applications here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simplified perturbational analysis is employed, together with the application of Green's theorem, to determine the first-order corrections to the reflection and transmission coefficients in the problem of diffraction of surface water waves by a nearly vertical barrier in two basically important cases: (i) when the barrier is partially immersed and (ii) when the barrier is completely submerged. The present analysis produces the desired results fairly easily and relatively quickly as compared with the known integral equation approach to this class of diffraction problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let G - (V, E) be a weighted undirected graph having nonnegative edge weights. An estimate (delta) over cap (u, v) of the actual distance d( u, v) between u, v is an element of V is said to be of stretch t if and only if delta(u, v) <= (delta) over cap (u, v) <= t . delta(u, v). Computing all-pairs small stretch distances efficiently ( both in terms of time and space) is a well-studied problem in graph algorithms. We present a simple, novel, and generic scheme for all-pairs approximate shortest paths. Using this scheme and some new ideas and tools, we design faster algorithms for all-pairs t-stretch distances for a whole range of stretch t, and we also answer an open question posed by Thorup and Zwick in their seminal paper [J. ACM, 52 (2005), pp. 1-24].

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A symmetric solution X satisfying the matrix equation XA = AtX is called a symmetrizer of the matrix A. A general algorithm to compute a matrix symmetrizer is obtained. A new multiple-modulus residue arithmetic called floating-point modular arithmetic is described and implemented on the algorithm to compute an error-free matrix symmetrizer.

Relevância:

60.00% 60.00%

Publicador: