55 resultados para Alpha-spectrometry, total dissolution
Resumo:
Details of the metabolism of alpha-terpineol by Pseudomonas incognita are presented. Degradation of alpha-terpineol by this organism resulted in the formation of a number of acidic and neutral metabolites. Among the acidic metabolites, beta-isopropyl pimelic acid, 1-hydroxy-4-isopropenyl-cyclohexane-1-carboxylic acid, 8-hydroxycumic acid, oleuropeic acid, cumic acid, and p-isopropenyl benzoic acid have been identified. Neutral metabolites identified were limonene, p-cymene-8-ol, 2-hydroxycineole, and uroterpenol. Cell-free extracts prepared from alpha-terpineol adapted cells were shown to convert alpha-terpineol, p-cymene-8-ol, and limonene to oleuropeic acid, 8-hydroxycumic acid, and perillic acid, respectively, in the presence of NADH. The same cell-free extract contained NAD+ -specific dehydrogenase(s) which converted oleuropyl alcohol, p-cymene-7,8-diol, and perillyl alcohol to their corresponding 7-carboxy acids. On the basis of various metabolites isolated from the culture medium, together with the supporting evidence obtained from enzymatic and growth studies, it appears that P. incognita degrades alpha-terpineol by at least three different routes. While one of the pathways seems to operate via oleuropeic acid, a second may be initiated through the aromatization of alpha-terpineol. The third pathway may involve the formation of limonene from alpha-terpineol and its further metabolism.
Resumo:
Intramolecularly hydrogen bonded conformations of (Aib-Pro)n sequences have been analysed theoretically. Both 4-1 (C10 and 3-1 (C7 hydrogen bonded regular structures are shown to be stereochemically feasible. Conformational energies for the helical structures have been estimated using classical potential energy methods. Both C10 and C7 conformations have very similar energies. Pyrrolidine ring puckering has a pronounced effect on the energies, and only Cv-endo puckered Pro residues can be accommodated. The theoretical calculations using spectroscopic data suggest that the recently proposed novel 310 helical conformation for benzyloxycarbonyl(Aib-Pro)4-methyl ester is in solution, is indeed energetically and stereochemically favourable.
Resumo:
The crystal structure of the pentapeptide p-toluene-sulfonyl-(α-aminoisobutyryl)5-methyl ester (Tosyl-(Aib)5-OMe) has been determined in the space group PImage . Pentapeptide molecules are folded in the 310 helical conformation and packed together, so as to yield a hydrophobic channel with a minimim diameter of 5.2 �. The channel contains crystallographically disordered material. This structure provides a model for channel formation by hydrophobic peptide aggregates and should prove useful in studies of alamethicin, suzukacillin and related Aib containing membrane channels. Triclinic (PImage ) crystals of the pentapeptide are obtained in the presence of LiClO4 in aqueous methanol, whereas crystallization from methanol alone yields crystals in the space group Pbca. The conformations of the peptide in the two crystal forms are very similar and only the molecular packing is dramatically different.
Resumo:
The situation normally encountered in the high-resolution refinement of protein structures is one in which the inaccurate positions of P out of a total of N atoms are known whereas those of the remaining atoms are unknown. Fourier maps with coefficients (FN -- F'P) × exp (i[alpha]'P) and (mFN -- nF'P) exp (i[alpha]'P), where FN is the observed structure factor and F'P and [alpha]'P are the magnitude and the phase angle of the calculated structure factor corresponding to the inaccurate atomic positions, are often used to correct the positions of the P atoms and to determine those of the Q unknown atoms. A general theoretical approach is presented to elucidate the effect of errors in the positions of the known atoms on the corrected positions of the known atoms and the positions of the unknown atoms derived from such maps. The theory also leads to the optimal choice of parameters used in the different syntheses. When the errors in the positions of the input atoms are systematic, their effects are not taken care of automatically by the syntheses.
Toxicity in Cuscuta reflexa Sucrose Content Decreases In Shoot Tips Upon Trehalose Feeding Trehalose
Resumo:
Trehalose, an {alpha},{alpha}-diglucoside, induced a rapid blackening and death of shoot tips of Cuscuta reflexa (dodder) cultured in vitro. The onset of toxic symptom was delayed if any of the several sugars which support the in vitro growth of Cuscuta was supplied with trehalose. The rate of trehalose uptake or its accumulation in the tissue was not affected by sugar cofeeding. The levels of total and reducing sugars declined appreciably in the trehalose-fed shoot tip explants compared to control tissue cultured in absence of a carbon source. This was not due to an increased rate of respiration of the trehalose-treated tissue. In shoot tips cultured in presence of both trehalose and sucrose, the decline in total and reducing sugars was curtailed. There was a marked fall in the level of sucrose; and invertase activity was higher in trehalose-fed shoot tips. The incorporation of label from [14C]glucose into sucrose in the shoot tip explant was reduced as early as 12 h of trehalose feeding. The results suggest that increased utilization of sucrose as well as an inhibition of its synthesis contribute to the drastic fall in the sucrose content upon trehalose feeding
Resumo:
Chick embryo tRNA, prepared by a simple large-scale method, was fractionated on three different ion-exchange columns. In all cases simple chromatographic patterns for various tRNA species were observed, indicating the presence of only a few major species of tRNA for each amino acid. By repeated chromatography one species of alanine tRNA was purified to approx. 80% purity. T1 ribonuclease digest of this purified tRNA gave a simple chromatographic pattern. Because of the simplicity of the method of preparation of tRNA from this readily available source and the presence of only a few species of tRNA for each amino acid, chick embryo is suited for the study of tRNA and its various functions in higher systems.
Resumo:
ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.
Resumo:
In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference.