102 resultados para Algebraic Bethe-ansatz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Silver code has captured a lot of attention in the recent past,because of its nice structure and fast decodability. In their recent paper, Hollanti et al. show that the Silver code forms a subset of the natural order of a particular cyclic division algebra (CDA). In this paper, the algebraic structure of this subset is characterized. It is shown that the Silver code is not an ideal in the natural order but a right ideal generated by two elements in a particular order of this CDA. The exact minimum determinant of the normalized Silver code is computed using the ideal structure of the code. The construction of Silver code is then extended to CDAs over other number fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utilizing a circuit model [1, 2] of an induction motor, a simplified analysis of steady state performance of a voltage controlled induction motor (VCIM) drive is described in this paper. By solving a set of nonlinear algebraic equations which describe the VCIM drive under steady operation, the operating variables such as constant components of torque, rotor flux linkages, fundamental components of stator voltage and current and phase angle are obtained for any given value of slip, triggering angle and supply voltage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An algebraic generalization of the well-known binary q-function array to a multivalued q-function array is presented. It is possible to associate tree-structure realizations for binary q-functions and multivalued q-functions. Synthesis of multivalued functions using this array is very simple

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key problem in helicopter aeroelastic analysis is the enormous computational time required for a numerical solution of the nonlinear system of algebraic equations required for trim, particularly when free wake models are used. Trim requires calculation of the main rotor and tail rotor controls and the vehicle attitude which leads to the six steady forces and moments about the helicopter center of gravity to be zero. An appropriate initial estimate of the trim state is needed for successful helicopter trim. This study aims to determine the control inputs that can have considerable effect on the convergence of trim solution in the aeroelastic analysis of helicopter rotors by investigating the basin of attraction of the nonlinear equations (set of initial guess points from which the nonlinear equations converge). It is illustrated that the three main rotor pitch controls of collective pitch, longitudinal cyclic pitch and lateral cyclic pitch have a significant contribution to the convergence of the trim solution. Trajectories of the Newton iterates are shown and some ideas for accelerating the convergence of a trim solution in the aeroelastic analysis of helicopters are proposed. It is found that the basins of attraction can have fractal boundaries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the architecture of a multiprocessor system which we call the Broadcast Cube System (BCS) for solving important computation intensive problems such as systems of linear algebraic equations and Partial Differential Equations (PDEs), and highlights its features. Further, this paper presents an analytical performance study of the BCS, and it describes the main details of the design and implementation of the simulator for the BCS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even research models of helicopter dynamics often lead to a large number of equations of motion with periodic coefficients; and Floquet theory is a widely used mathematical tool for dynamic analysis. Presently, three approaches are used in generating the equations of motion. These are (1) general-purpose symbolic processors such as REDUCE and MACSYMA, (2) a special-purpose symbolic processor, DEHIM (Dynamic Equations for Helicopter Interpretive Models), and (3) completely numerical approaches. In this paper, comparative aspects of the first two purely algebraic approaches are studied by applying REDUCE and DEHIM to the same set of problems. These problems range from a linear model with one degree of freedom to a mildly non-linear multi-bladed rotor model with several degrees of freedom. Further, computational issues in applying Floquet theory are also studied, which refer to (1) the equilibrium solution for periodic forced response together with the transition matrix for perturbations about that response and (2) a small number of eigenvalues and eigenvectors of the unsymmetric transition matrix. The study showed the following: (1) compared to REDUCE, DEHIM is far more portable and economical, but it is also less user-friendly, particularly during learning phases; (2) the problems of finding the periodic response and eigenvalues are well conditioned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An efficient algorithm within the finite deformation framework is developed for finite element implementation of a recently proposed isotropic, Mohr-Coulomb type material model, which captures the elastic-viscoplastic, pressure sensitive and plastically dilatant response of bulk metallic glasses. The constitutive equations are first reformulated and implemented using an implicit numerical integration procedure based on the backward Euler method. The resulting system of nonlinear algebraic equations is solved by the Newton-Raphson procedure. This is achieved by developing the principal space return mapping technique for the present model which involves simultaneous shearing and dilatation on multiple potential slip systems. The complete stress update algorithm is presented and the expressions for viscoplastic consistent tangent moduli are derived. The stress update scheme and the viscoplastic consistent tangent are implemented in the commercial finite element code ABAQUS/Standard. The accuracy and performance of the numerical implementation are verified by considering several benchmark examples, which includes a simulation of multiple shear bands in a 3D prismatic bar under uniaxial compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We predict the dynamic light scattering intensity S(q,t) for the L3 phase (anomalous isotropic phase) of dilute surfactant solutions. Our results are based on a Landau-Ginzburg approach, which was previously used to explain the observed static structure factor S(q, 0). In the extreme limit of small q, we find a monoexponential decay with marginal or irrelevant hydrodynamic interactions. In most other regimes the decay of S(q,t) is strongly nonexponential; in one case, it is purely algebraic at long times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ‘‘extended’’ ARS (Ablowitz, Ramani, and Segur) algorithm is introduced to characterize a dynamical system as Painlevé or otherwise; to that end, it is required that the formal series—the Laurent series, logarithmic, algebraic psi series about a movable singularity—are shown to converge in the deleted neighborhood of the singularity. The determinations thus obtained are compared with those following from the α method of Painlevé. An attempt is made to relate the structure of solutions about a movable singularity with that of first integrals (when they exist). All these ideas are illustrated by a comprehensive analysis of the general two‐dimensional predator‐prey system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let O be a monomial curve in the affine algebraic e-space over a field K and P be the relation ideal of O. If O is defined by a sequence of e positive integers some e - 1 of which form an arithmetic sequence then we construct a minimal set of generators for P and write an explicit formula for mu(P).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenomenological theory of hemispherical growth in the context of phase formation with more than one component is presented. The model discusses in a unified manner both instantaneous and progressive nucleation (at the substrate) as well as arbitrary growth rates (e.g. constant and diffusion controlled growth rates). A generalized version of Avrami ansatz (a mean field description) is used to tackle the ''overlap'' aspects arising from the growing multicentres of the many components involved, observing that the nucleation is confined to the substrate plane only. The time evolution of the total extent of macrogrowth as well as those of the individual components are discussed explicitly for the case of two phases. The asymptotic expressions for macrogrowth are derived. Such analysis depicts a saturation limit (i.e. the maximum extent of growth possible) for the slower growing component and its dependence on the kinetic parameters which, in the electrochemical context, can be controlled through potential. The significance of this model in the context of multicomponent alloy deposition and possible future directions for further development are pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.