141 resultados para AQUEOUS TWO-PHASE SYSTEM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous carbon-sulfur (a-C:S) composite films were prepared by vapor phase pyrolysis technique. The structural changes in the a-C:S films were investigated by electron microscopy. A powder X-ray diffraction (XRD) study depicts the two-phase nature of a sulfur-incorporated a-C system. The optical bandgap energy shows a decreasing trend with an increase in the sulfur content and preparation temperature. This infers a sulfur incorporation and pyrolysis temperature induced reduction in structural disorder or increase in sp (2) or pi-sites. The presence of sulfur (S 2p) in the a-C:S sample is analyzed by the X-ray photoelectron spectroscopy (XPS). The sp (3)/sp (2) hybridization ratio is determined by using the XPS C 1s peak fitting, and the results confirm an increase in sp (2) hybrids with sulfur addition to a-C. The electrical resistivity variation in the films depends on both the sulfur concentration and the pyrolysis temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of Raman spectroscopic studies of (NH4)2ZnBr4 crystal in the spectral range from 20-250 cm-1 and over a range of temperature from 90K to 440K covering the low temperature ferroelectric and high temperature incommensurate phases are presented. The plots of the integrated areas and peak heights of the strong Raman lines versus temperature show anomalous behaviour near the two phase transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-time analytical solutions of temperature and moving boundary in two-dimensional two-phase freezing due to a cold spot are presented in this paper. The melt occupies a semi-infinite region. Although the method of solution is valid for various other types of boundary conditions, the results in this paper are given only for the prescribed flux boundary conditions which could be space and time dependent. The freezing front propagations along the interior of the melt region exhibit well known behaviours but the propagations along the surface are of new type. The freezing front always depends on material parameters. Several interesting results can be obtained as particular cases of the general results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss a technique for solving the Landau-Zener (LZ) problem of finding the probability of excitation in a two-level system. The idea of time reversal for the Schrodinger equation is employed to obtain the state reached at the final time and hence the excitation probability. Using this method, which can reproduce the well-known expression for the LZ transition probability, we solve a variant of the LZ problem, which involves waiting at the minimum gap for a time t(w); we find an exact expression for the excitation probability as a function of t(w). We provide numerical results to support our analytical expressions. We then discuss the problem of waiting at the quantum critical point of a many-body system and calculate the residual energy generated by the time-dependent Hamiltonian. Finally, we discuss possible experimental realizations of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical potentials of SrO in two-phase fields (TiO2 + SrTiO3) (SrTiO3 + Sr4Ti3O10) (Sr4Ti3O10 + Sr3Ti2O7) and (Sr3Ti2O7 + Sr2TiO4) of the pseudo-binary system (SrO + TiO2) have been measured in the temperature range (900 to 1250) K relative to pure SrO as the reference state using solid-state galvanic cells incorporating single crystal SrF2 as the electrolyte The cells were operated under pure oxygen at ambient pressure The standard Gibbs free energies of formation of strontium titanates SrTiO3 Sr4Ti3O10 Sr3Ti2O7 and Sr2TiO4 from their component binary oxides were derived from the reversible electromotive force (EMF) of the cells For the formation of the four compounds from their component oxides TiO2 with rutile structure and SrO the standard Gibbs free energy changes are given by Delta G((ox))(SrTiO3) +/- 89/(J mol(-1)) = -121878 + 3 881(T/K) Delta G((ox))(Sr4Ti3O10) +/- 284/(J mol(-1)) = -409197 + 14 749(T/K) Delta G((ox))(Sr3Ti2O7) +/- 190/(J mol(-1)) = -285827 + 10 022(T/K) Delta G((ox))(Sr2TiO4) +/- 110/(J mol(-1))= -159385 + 3 770(T/K) The reference state for solid TiO2 is the rutile form The results of this study are in good agreement with Gibbs free energy of formation data reported in the literature for SrTiO3 but differ significantly with data for Sr4Ti3O10 For Si3Ti2O7 and Si2TiO4 experimental measurements are not available in the literature for direct comparison with the results obtained in this study (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical resistance (R) measurements are reported for ternary mixtures of 3-methylpyridine, water and heavy water as a function of temperature (T) and heavy water content in total water. These mixtures exhibit a limited two-phase region marked by a loop size (ΔT) that goes to zero as the double critical point (DCP) is approached. The measurements scanned the ΔT range 1.010°C less-than-or-equals, slant ΔT less-than-or-equals, slant 77.5°C. The critical exponent (θ), which signifies the divergence of ∂R/∂T, doubles within our experimental uncertainties as the DCP is reached very closely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of nanoscale liquid droplets by friction of a solid is observed in real-time. This is achieved using a newly developed in situ transmission electron microscope (TEM) triboprobe capable of applying multiple reciprocating wear cycles to a nanoscale surface. Dynamical imaging of the nanoscale cyclic rubbing of a focused-ion-beam (FIB) processed Al alloy by diamond shows that the generation of nanoscale wear particles is followed by a phase separation to form liquid Ga nanodroplets and liquid bridges. The transformation of a two-body system to a four-body solid-liquid system within the reciprocating wear track significantly alters the local dynamical friction and wear processes. Moving liquid bridges are observed in situ to play a key role at the sliding nanocontact, interacting strongly with the highly mobile nanoparticle debris. In situ imaging demonstrates that both static and moving liquid droplets exhibit asymmetric menisci due to nanoscale surface roughness. Nanodroplet kinetics are furthermore dependent on local frictional temperature, with solid-like surface nanofilaments forming on cooling. TEM nanotribology opens up new avenues for the real-time quantification of cyclic friction, wear and dynamic solid-liquid nanomechanics, which will have widespread applications in many areas of nanoscience and nanotechnology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable-temperature X-ray diffraction studies of C70 suggest the occurrence of two phase transitions around 350 and 280 K where the high-temperature phase is fcc and the low-temperature phase is monoclinic, best described as a distorted hcp structure with a doubled unit cell; two like-phases (possibly hcp) seem to coexist in the 280-350 K range. Application of pressure gives rise to three distinct transitions associated with characteristic pressure coefficients, the extrapolated values of the transition temperatures at ambient pressure being around 340, 325 and 270 K. Pressure delineates closely related phases Of C70 just as in the case Of C60 which exhibits two orientational phase transitions at high pressures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ag-Ni system is characterized by large differences in atomic sizes (14%) and a positive heat of mixing (+23 kJ mol(-1)). The binary equilibrium diagram for this system therefore exhibits a large miscibility gap in both solid and liquid state. This paper explores the size-dependent changes in microstructure and the suppression of the miscibility gap which occurs when free alloy particles of nanometer size are synthesized by co-reduction of Ag and Ni metal precursors. The paper reports that complete mixing between Ag and Ni atoms could be achieved for smaller nanoparticles (<7 nm). These particles exhibit a single-phase solid solution with face-centered cubic (fcc) structure. With increase in size, the nanoparticles revealed two distinct regions. One of the regions is composed of pure Ag. This region partially surrounds a region of fcc solid solution at an early stage of decomposition. Experimental observations were compared with the results obtained from the thermodynamic calculations, which compared the free energies corresponding to a physical mixture of pure Ag and Ni phases and a fcc Ag-Ni solid solution for different particle sizes. Results from the theoretical calculations revealed that, for the Ag-Ni system, solid solution was energetically preferred over the physical mixture configuration for particle sizes of 7 nm and below. The experimentally observed two-phase microstructure for larger particles was thus primarily due to the growth of Ag-rich regions epitaxially on initially formed small fcc Ag-Ni nanoparticles. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed space time coding for wireless relay networks where the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. In the first phase of the two-phase transmission model, a T -length complex vector is transmitted from the source to all the relays. At each relay, the inphase and quadrature component vectors of the received complex vectors at the two antennas are interleaved before processing them. After processing, in the second phase, a T x 2R matrix codeword is transmitted to the destination. The collection of all such codewords is called Co-ordinate interleaved distributed space-time code (CIDSTC). Compared to the scheme proposed by Jing-Hassibi, for T ges AR, it is shown that while both the schemes give the same asymptotic diversity gain, the CIDSTC scheme gives additional asymptotic coding gain as well and that too at the cost of negligible increase in the processing complexity at the relays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid) → CaTiO3(solid), ΔG° ± 85/(J · mol−1) = −80,140 − 6.302(T/K); 4CaO(solid) + 3TiO2(solid) → Ca4Ti3O10(solid), ΔG° ± 275/(J · mol−1) = −243,473 − 25.758(T/K); 3CaO(solid) + 2TiO2(solid) → Ca3Ti2O7(solid), ΔG° ± 185/(J · mol−1) = −164,217 − 16.838(T/K). The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.