151 resultados para 8-70A
Resumo:
Addition of hydrogen cyanide to 9-methyl-Δ4-octalone-3 (IIb), as a model, yielded both cis- and trans-ketonitriles the configurations of which are assigned on the basis of IR spectra of the hydrolysed products. Similar addition of hydrogen cyanide to 9β-methyl-8β-hydroxy-Δ4-octalone-3 (IIc) gave the corresponding cis- and trans-hydroxy-keto-nitriles, configurations of which were proved by their conversion into cis- and trans-keto-nitriles obtained in the model study. In contrast to the model experiment where the trans-product predominated, the cis-isomer was the major product of addition to IIc.
Resumo:
Several methods were developed for converting isodigitoxigenin (2a) into methyl acetals 4b and 4c. Of these, methanolysis (followed by acetylation) of isodigitoxigenin in the presence of p-toluenesulfonic acid proved most useful. Each isomer reached an equilibrium corresponding to ca. 3:1 acetal 4c to 4b within 15 min in benzene containing p-toluenesulfonic acid. Addition of dihydropyran to the equilibrium mixture resulted in excellent conversion into vinyl ether 5a. Heating either acetal 4b or 4c in benzene containing p-toluenesulfonic acid led to a skeletal rearrangement culminating in formation of C-norcardenolide 6. In addition to results of physical measurements, the structure of spiran 6 was confirmed by degradation to methyl ketone 8. Similar rearrangement of isodigitoxigenin gave spiran 9 accompanied by C-norcardenolide 6. Treating lactone 9 with p-toluenesulfonic acid in methanol-water provided acetals 10a and 10b, which on further contact with p-toluenesulfonic acid in refluxing benzene gave lactone 9 and cardenolide 6. Evidence underlying the stereochemical assignments noted for structures 4, 9, and 10 was also discussed.
Resumo:
The total synthesis of 8-isotestosterone (II) and the corresponding anthracene analogue (III) following the benzohydrindane route is reported. Catalytic hydrogenation of trans-1β-acetoxy-8-methyl-4,5-(3′-methyl-4′-hydroxybenzo)-hydrindane (V) followed by oxidation has furnished two isomeric tricyclic keto acetates, viz. 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aα,-5α,6,7,8,8aα-decahydronaphthalene (VII) and 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aβ,5,6,7,8,8aβ-decahydronaphthalene (IX) which are cis-non-steroid and cis-steroid configurations of the same cyclopentano-cis-decalins. A difference in the direction of enolization of the keto acetate (VII) in alkylation reaction and enol acetylation towards the methine and the methylene carbon atoms respectively has been observed.
Resumo:
3-Methyl-4-carboxy-2-(2′-methoxy-6′-naphthyl)cyclopenten-3-acetic acid, prepared from trans methyl 2-methyl-3-carbomethoxycyclopentanon-2-acetate and 2-methoxy-6-lithionaphthalene, on ring closure and catalytic hydrogenation gave dl-3-methoxy-17β-carboxy-1,3,5(10),6,8-estrapentaene.
Resumo:
Reduction of trans-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XI) by lithium tri-t-butoxyaluminohydride gave trans-1β-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XII) which on lithium-liquid ammonia reduction gave trans-anti-1β-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XIII). Reduction of cis-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XV) by sodium borohydride gave cis-1α-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XVI) which on lithium-liquid ammonia reduction gave cis-syn-1α-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XVII).
Resumo:
The crystal and molecular structure has been determined by the heavy-atom method and refined by the least-squares procedure to R= 8"3 % for 2033 photographically observed reflexions. The compound crystallizes in the space group P]" with two molecules in a unit cell of dimensions a = 11"68 + 0-02, b = 12"91 +0"02, c= 10"43+0"02/~, e= 114"7+ 1, fl=90-2+ 1 and 7,= 118.3+ 1 °. The unit cell also contains one molecule of the solvent, benzene. The 'cage' part of the molecule exhibits a large number of elongated bonds and strained internal valency angles. The bridgehead angle in the bicyclic heptane ring system is 89 °. The acetate group at C(16) and the methyl group at C(15) are cis to each other.
Resumo:
In the title compound, C16H13ClN2O, the quinoline ring system is approximately planar [maximum deviation 0.021 (2) angstrom] and forms a dihedral angle of 85.93 (6)degrees with the pyridone ring. Intermolecular C-H center dot center dot center dot O hydrogen bonding, together with weak C-H center dot center dot center dot pi and pi-pi interactions [centroid-to-centroid distances 3.5533 (9) and 3.7793 (9) angstrom], characterize the crystal structure.
Resumo:
In the title compound, C15H12ClN3O, the quinoline ring system is essentially planar, with a maximum deviation of 0.017 (1) angstrom. The crystal packing is stabilized by pi-pi stacking interactions between the quinoline rings of adjacent molecule, with a centroid-centroid distance of 3.5913 (8) angstrom. Aweak C-H center dot center dot center dot pi contact is also observed between molecules.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.