48 resultados para 7441-104
Resumo:
The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.
Resumo:
The unfolding pathway of two very similar tetrameric legume lectins soybean agglutinin (SBA) and Concanavalin A ( ConA) were determined using GdnCl-induced denaturation. Both proteins displayed a reversible two-state unfolding mechanism. The analysis of isothermal denaturation data provided values for conformational stability of the two proteins. It was found that the DeltaG of unfolding of SBA was much higher than ConA at all the temperatures at which the experiments were done. ConA had a T-g 18 degreesC less than SBA. The higher conformational stability of SBA in comparison to ConA is largely due to substantial differences in their degrees of subunit interactions. Ionic interactions at the interface of the two proteins especially at the noncanonical interface seem to play a significant role in the observed stability differences between these two proteins. Furthermore, SBA is a glycoprotein with a GlcNac(2)Man(9) chain attached to Asn-75 of each subunit. The sugar chain in SBA lies at the noncanonical interface of the protein, and it is found to interact with the amino acid residues in the adjacent noncanonical interface. These interactions further stabilize SBA with respect to ConA, which is not glycosylated.
Resumo:
The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.