138 resultados para 350


Relevância:

10.00% 10.00%

Publicador:

Resumo:

NiTi thin films deposited by DC magnetron sputtering of an alloy (Ni/Ti:45/55) target at different deposition rates and substrate temperatures were analyzed for their structure and mechanical properties. The crystalline structure, phase-transformation and mechanical response were characterized by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and Nano-indentation techniques, respectively. The films were deposited on silicon substrates maintained at temperatures in the range 300 to 500 degrees C and post-annealed at 600 degrees C for four hours to ensure film crystallinity. Films deposited at 300 degrees C and annealed for 600 degrees C have exhibited crystalline behavior with Austenite phase as the prominent phase. Deposition onto substrates held at higher deposition temperatures (400 and 500 degrees C) resulted in the co-existence of Austenite phase along with Martensite phase. The increase in deposition rates corresponding to increase in cathode current from 250 to 350 mA has also resulted in the appearance of Martensite phase as well as improvement in crystallinity. XRD analysis revealed that the crystalline film structure is strongly influenced by process parameters such as substrate temperature and deposition rate. DSC results indicate that the film deposited at 300 degrees C had its crystallization temperature at 445 degrees C in the first thermal cycle, which is further confirmed by stress temperature response. In the second thermal cycle the Austenite and Martensite transitions were observed at 75 and 60 degrees C respectively. However, the films deposited at 500 degrees C had the Austenite and Martensite transitions at 73 and 58 degrees C, respectively. Elastic modulus and hardness values increased from 93 to 145 GPa and 7.2 to 12.6 GPa, respectively, with increase in deposition rates. These results are explained on the basis of change in film composition and crystallization. (C) 2010 Published by Elsevier Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rare earth iron garnets Ln3Fe5O12 and Y3AlxFe5-xO12, where x=1.0-5.0, and Y1.5Gd1.5Al0.2Fe4.8O12 have been prepared by the combustion of redox mixtures containing corresponding metal nitrates and oxalyl dihydrazide, i.e. C2H6N4O2 at 350-degrees-C. The solid combustion products are amorphous, submicrometre-sized powders which, on heating at 750-degrees-C for 3 h, yield crystalline single-phase garnets. The particle size of the garnets is below 1 mum and the surface area ranges from 16 to 90 m2 g-1. Yttrium iron garnet could be sintered to a density of more than 95% at 1200-degrees-C for 3 h, giving an average grain size of 3-5 mum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tracer diffusion coefficients of the elements as well as the integrated interdiffusion coefficients are determined for the Cu3Sn and Cu6Sn5 intermetallic compounds using incremental diffusion couples and Kirkendall marker shift measurements. The activation energies are determined for the former between 498 K and 623 K (225 A degrees C and 350 A degrees C) and for the latter between 423 K and 473 K (150 A degrees C and 200 A degrees C). Sn is found to be a slightly faster diffuser in Cu6Sn5, and Cu is found to be the faster diffuser in Cu3Sn. The results from the incremental couples are used to predict the behavior of a Cu/Sn couple where simultaneous growth of both intermetallics occurs. The waviness at the Cu3Sn/Cu6Sn5 interface and possible reasons for not finding Kirkendall markers in both intermetallics in the Cu/Sn couple are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Variable-temperature X-ray diffraction studies of C70 suggest the occurrence of two phase transitions around 350 and 280 K where the high-temperature phase is fcc and the low-temperature phase is monoclinic, best described as a distorted hcp structure with a doubled unit cell; two like-phases (possibly hcp) seem to coexist in the 280-350 K range. Application of pressure gives rise to three distinct transitions associated with characteristic pressure coefficients, the extrapolated values of the transition temperatures at ambient pressure being around 340, 325 and 270 K. Pressure delineates closely related phases Of C70 just as in the case Of C60 which exhibits two orientational phase transitions at high pressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The various types of chain folding and possible intraloop as well as interloop base pairing in human telomeric DNA containing d(TTAG(3)) repeats have been investigated by model-building, molecular mechanics, and molecular dynamics techniques. Model-building and molecular mechanics studies indicate that it is possible to build a variety of energetically favorable folded-back structures with the two TTA loops on same side and the 5' end thymines in the two loops forming TATA tetrads involving a number of different intraloop as well as interloop A:T pairing schemes. In these folded-back structures, although both intraloop and interloop Watson-Crick pairing is feasible, no structure is possible with interloop Hoogsteen pairing. MD studies of representative structures indicate that the guanine-tetraplex stem is very rigid and, while the loop regions are relatively much more flexible, most of the hydrogen bonds remain intact throughout the 350-ps in vacuo simulation. The various possible TTA loop structures, although they are energetically similar, have characteristic inter proton distances, which could give rise to unique cross-peaks in two-dimensional nuclear Overhauser effect spectroscopy (NOESY) experiments. These folded-back structures with A:T pairings in the loop region help in rationalizing the data from chemical probing and other biochemical studies on human telomeric DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anatase titania nanotubes (TNTs) have been synthesized from P25 TiO2 powder by alkali hydrothermal method followed by post annealing. The microstructure analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of anatase nanotubes with a diameter of 9-10 nm. These NTs are used to make photo anode in dye-sensitized solar cells (DSSCs). Layer by layer deposition with curing of each layer at 350 C is employed to realize films of desired thickness. The performance of these cells is studied using photovoltaic measurements. Electrochemical impedance spectroscopy (EIS) is used to quantitatively analyze the effect of thickness on the performance of these cells. These studies revealed that the thickness of TiO2 has a pronounced impact on the cell performance and the optimum thickness lies in the range of 10-14 mu m. In comparison to dye solar cells made of P25, TNTs based cells exhibit an improved open circuit voltage and fill factor (FF) due to an increased electron lifetime, as revealed by EIS analysis. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the dual head-discharge characteristics of a modified chimney weir. It is shown by an optimization procedure that the modified chimney weir having an inward trapezoidal weir over an inverted V-notch can produce discharges proportional to both the logarithm of the head as well as the linear power of the head reckoned independently over two different reference planes, within a prefixed maximum allowable percentage error from the theoretical discharge. A new technique is adopted to optimize the weir parameters, in order to obtain the maximum ranges of measurement under logarithmic, linear as well as combined characteristics. In the case of linear weir it is shown that it is possible to enhance the linearity range of the chimney weir by more than 540% and for a weir with constant indication accuracy by more than 350%. In addition, about 86% of the overall depth of the designed linear weir and over 90% of the logarithmic weir is converted as the corresponding measurable ranges. Experiments with four typical weirs give consistent constant average coefficient of discharge for each weir confirming the theory. The practical application of the weir in minor irrigation, hydraulic and other engineering fields is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)(3):Eu phase and subsequent heat treatment at 350 and 600 degrees C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)(3):Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)(3):Eu. The strong and intense Raman peak at 489 cm(-1) has been assigned to A(g) mode, which is attributed to the hexagonal phase of Gd2O3. The peak at similar to 360 cm(-1) has been assigned to the combination of F-g and E-g modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter we report large magnetoresistance (MR) in ceramic samples of La1?xSrxMnO3 (0.1?x?0.4) in the temperature range 4.2 K?T?350 K in fields up to 6 T. We find that a large negative and isotopic MR exists for the whole composition range studied and the absolute value of resistivity change on application of magnetic field is more for samples with lower x which have higher resistivity. We find that the large MR occurs in the ferromagnetic state only and MR has a close relation with the magnetization M. © 1995 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correspondence between the forced magnetic reconnection induced by perturbing the boundary of the simple Taylor model and the surface-wave-induced magnetic reconnection given by Alfven resonance theory is pointed out explicitly by showing that the theory of forced magnetic reconnection is actually embedded in the Alfven resonance theory. The advantages of viewing the forced reconnection as surface-wave-induced reconnection are briefly discussed in the context of the formation of small-scale structures at the magnetospheric boundary and solar coronal heating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium-ion conduction in mixed-metal phosphates, (LiMMIII)-M-V(PO,), [M-V = Nb, Ta; M-III = Al, Cr, Fe], possessing the rhombohedral (R (3) over bar c) NASICON structure has been investigated. Among the phosphates investigated, LiTaAl(PO4)(3) exhibits the highest conductivity, sigma approximate to 1.0 x 10(-2) S cm(-1) at 350 degrees C (E-a = 0.47 eV), comparable to the conductivity of LiTi2(PO4)(3). Unlike LiTi2(PO4)(3) which contains lithium-reducible Ti-IV, LiTaAl(PO4)(3) contains stable Ta-V and Al-III oxidation states and hence deserves further attention towards tailoring new lithium-ion conductors for application as electrolytes in solid state lithium batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine particle and large surface area Cu/CeO2 catalysts of crystallite sizes in the range of 100-200 Angstrom synthesized by the solution combustion method have been investigated for NO reduction. Five percent Cu/CeO2 catalyst shows nearly 100% conversion of NO by NH3 below 300 degrees C, whereas pure ceria and Zr, Y, and Ca doped ceria show 85-95% NO conversion above 600 degrees C. Similarly NO reduction by CO has been observed over 5% Cu/CeO2 with nearly 100% conversion below 300 degrees C. Hydrocarbon (n-butane) oxidation by NO to CO2, N-2, and H2O has also been demonstrated over this catalyst below 350 degrees C making Cu/CeO2 a new NO reduction catalyst in the low temperature window of 150-350 degrees C. Kinetics of NO reduction over 5% Cu/CeO2 have also been investigated. The rate constants are in the range of 1.4 x 10(4) to 2.3 x 10(4) cm(3) g(-1) s(-1) between 170 and 300 degrees C. Cu/CeO2 catalysts are characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy where Cu2+ ions are shown to be dispersed on the CeO2 surface. (C) 1999 Academic Press.