83 resultados para 2ND HYPERPOLARIZABILITIES
Resumo:
At the present time, materials with dimensions in the range of microns to nanometers have become the prime objects of vigorous research activities of all over the world. The possibility of artificially creating novel materials with exotic and tailor made properties that are essential for future development in the frontier areas of electronics, photonics, spintronics etc has generated much interest in the study of these mesoscopic and nanoscopic materials. These materials also have the potential for wide ranging economically viable technological, industrial, engineering and bio-medical applications. They may consist of metals , alloys , ceramics, polymers, composites and biological materials; which are usually assembled at the atomic / molecular level to achieve new properties. Understanding the underlying science and characterization of these new materials with a view of harnessing their exotic properties is the prime focus of the researchers. These Proceedings address these issues relating to mesoscopic, nanoscopic and macroscopic materials.
Resumo:
This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key pre-distribution technique. Inspired by the recent proxy-based scheme in the work of Ling and Znati (2005) and Li et al. (2005), we introduce a friend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friend-based scheme performs better than the proxy-based scheme both in terms of resilience against node capture as well as in energy consumption for pairwise key establishment, making our scheme more feasible.
Resumo:
In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model.
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.
Resumo:
Since their emergence, wireless sensor networks (WSNs) have become increasingly popular in the pervasive computing industry. This is particularly true within the past five years, which has seen sensor networks being adapted for wide variety of applications. Most of these applications are restricted to ambience monitoring and military use, however, very few commercial sensor applications have been explored till date. For WSNs to be truly ubiquitous, many more commercial sensor applications are yet to be investigated. As an effort to probe for such an application, we explore the potential of using WSNs in the field of Organizational Network Analysis (ONA). In this short paper, we propose a WSN based framework for analyzing organizational networks. We describe the role of WSNs in learning relationships among the people of an organization and investigate the research challenges involved in realizing the proposed framework.
Broadcast in Adhoc Wireless Networks with Selfish Nodes: A Bayesian Incentive Compatibility Approach
Resumo:
We consider the incentive compatible broadcast (ICB) problem in ad hoc wireless networks with selfish nodes. We design a Bayesian incentive compatible broadcast (BIC-B) protocol to address this problem. VCG mechanism based schemes have been popularly used in the literature to design dominant strategy incentive compatible (DSIC) protocols for ad hoc wireless networks. VCG based mechanisms have two critical limitations: (i) the network is required to be bi-connected, (ii) the resulting protocol is not budget balanced. Our proposed BIC-B protocol overcomes these difficulties. We also prove the optimality of the proposed scheme.