51 resultados para 291503 Biomaterials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (similar to 0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomechanical intervention through electroactuation is an effective strategy to guide stem cell differentiation for tissue engineering and regenerative medicine. In the present study, we elucidate that physical forces exerted by electroactuated gold nanoparticles (GNPs) have a strong influence in regulating the lineage commitment of human mesenchymal stem cells (hMSCs). A novel platform that combines intracellular and extracellular GNPs as nano-manipulators was designed to trigger neurogenic/cardiomyogenic differentiation in hMSCs, in electric field stimulated culture condition. In order to mimic the native microenvironment of nerve and cardiac tissues, hMSCs were treated with physiologically relevant direct current electric field (DC EF) or pulsed electric field (PEF) stimuli, respectively. When exposed to regular intermittent cycles of DC EF stimuli, majority of the GNP actuated hMSCs acquired longer filopodial extensions with multiple branch-points possessing neural-like architecture. Such morphological changes were consistent with higher mRNA expression level for neural-specific markers. On the other hand, PEF elicited cardiomyogenic differentiation, which is commensurate with the tubelike morphological alterations along with the upregulation of cardiac specific markers. The observed effect was significantly promoted even by intracellular actuation and was found to be substrate independent. Further, we have substantiated the participation of oxidative signaling, G0/G1 cell cycle arrest and intracellular calcium Ca2+] elevation as the key upstream regulators dictating GNP assisted hMSC differentiation. Thus, by adopting dual stimulation protocols, we could successfully divert the DC EF exposed cells to differentiate predominantly into neural-like cells and PEF treated cells into cardiomyogenic-like cells, via nanoactuation of GNPs. Such a novel multifaceted approach can be exploited to combat tissue loss following brain injury or heart failure. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium ions (Sr2+) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg-3(PO4)(2) - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7 MPa (compression), 242 MPa (bending) and 10.7 MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg-3(PO4)(2). The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29 mu m for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg2+ release and slow but sustained release of Sr2+ from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr2+-release, while the scaffold degrades in physiological medium. Statement of significance The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg2+ and PO43- as well as Sr2+, which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)(2.74)). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 +/- 0.5MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 +/- 0.6MPa). The difference in properties is explained in terms of the phase assemblage and microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.