81 resultados para 280


Relevância:

10.00% 10.00%

Publicador:

Resumo:

C13H12F3NO2, M(r) = 271.2, triclinic, P1BAR, a = 5.029 (2), b = 7.479 (2), c = 17.073 (5) angstrom, alpha = 97.98 (2), beta = 95.54 (3), gamma = 103.62 (3)-degrees, V = 612.4 (4) angstrom 3, Z = 2, D(m) = 1.463, D(x) = 1.471 g cm-3, lambda(Mo K-alpha) = 0.71069 angstrom, mu = 1.23 cm-1, F(000) = 280, T = 298 K, final R value is 0.041 for 2047 observed reflections with \F(omicron)\ greater-than-or-equal-to 6-sigma(\F(omicron)\). The N-C(sp2) bond length is 1.356 (2) angstrom. The N and C atoms of the ethylamino group deviate by < 0.15 angstrom from the plane of the aromatic ring. Short intramolecular contacts, C(3)...F(17) 2.668 (3) angstrom [H(3)...F(17) 2.39 (2) angstrom, C(3)-H(C3)...F(17) 98 (1)-degrees], C(5)...F(18) 3.074 (3) and C(5)...F(19) 3.077 (3) angstrom exist in the structure. The crystal structure is stabilized by intermolecular N-H...O hydrogen bonds with N(12)-H(N12) 0.79 (3), H(N12)...O(11)' 2.36 (3), N(12)...O(11)' (x - 1, y + 1, z) 3.105 (3) angstrom and N(12)-H(N12)...O(11)' 155 (2)-degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sintering, electrical conductivity and thermal expansion behaviour of combustion synthesised strontium substituted rare earth manganites with the general formula Ln(1-x)Sr(x)MnO(3) (Ln = Pr, Nd and Sm; x = 0, 0.16 and 0.25) have been investigated as solid oxide fuel cell cathode materials. The combustion derived rare earth manganites have surface area in the range of 13-40 m(2)/g. Strontium substitution increases the electrical conductivity values in all the rare earth manganites. With the decreasing ionic radii of rare earth ions, the conductivity value decreases. Among the rare earth manganites studied, (Pr/Nd)(0.75)Sr0.25MnO3 show high electrical conductivity ( > 100 S/cm). The thermal expansion coefficients of Pr0.75Sr0.25MnO3 and Nd0.75Sr0.25MnO3 were found to be 10.2 x 10(-6) and 10.7 x 10(-6) K-1 respectively, which is very close to that of the electrolyte (YSZ) used in solid oxide fuel cells. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer degradation in solution has several advantages over melt pyrolysis, The degradation of low-density polyethylene (LDPE) occurs at much lower temperatures in solution (280-360degreesC) than in conventional melt pyrolysis (400-450degreesC). The thermal degradation kinetics of LDPE in solution was investigated in this work. LDPE was dissolved in liquid paraffin and degraded for 3 h at various temperatures (280-360degreesC). Samples were taken at specific times and analyzed with high-pressure liquid chromatography/gel permeation chromatography for the molecular weight distribution (MWD), The time evolution of the MWD was modeled with continuous distribution kinetics. Data indicated that LDPE followed random-chain-scission degradation. The rapid initial drop in molecular weight, observed up to 45 min, was attributed to the presence of weak links in the polymer. The rate coefficients for the breakage of weak and strong links were determined, and the corresponding average activation energies were calculated to be 88 and 24 kJ/mol, respectively. (C) 2002 John Wiley Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the preparation of acicular hydrogoethite (alpha -FeOOH.xH(2)O, 0.1 < x < 0.22) particles of 0.3-1 mm length has been optimized by air oxidation of Fe( II) hydroxide gel precipitated from aqueous (NH4)(2)Fe(SO4)(2) solutions containing 0.005-0.02 atom% of cationic Pt, Pd or Rh additives as morphology controlling agents. Hydrogoethite particles are evolved from the amorphous ferrous hydroxide gel by heterogeneous nucleation and growth. Preferential adsorption of additives on certain crystallographic planes thereby retarding the growth in the perpendicular direction, allows the particles to acquire acicular shapes with high aspect ratios of 8-15. Synthetic hydrogoethite showed a mass loss of about 14% at similar to 280 degreesC, revealing the presence of strongly coordinated water of hydration in the interior of the goethite crystallites. As evident from IR spectra, excess H2O molecules (0.1- 0.22 per formula unit) are located in the strands of channels formed in between the double ribbons of FeO6 octahedra running parallel to the c- axis. Hydrogoethite particles constituted of multicrystallites are formed with Pt as additive, whereas single crystallite particles are obtained with Pd (or Rh). For both dehydroxylation as well as H-2 reduction, a lower reaction temperature (similar to 220 degreesC) was observed for the former (Pt treated) compared to the latter (Pd or Rh) (similar to 260 degreesC). Acicular magnetite (Fe3O4) was prepared either by reducing hydrogoethite (magnetite route) or dehydroxylating hydrogoethite to hematite and then reducing it to magnetite (hematite- magnetite route). According to TEM studies, preferential dehydroxylation of hydrogoethite along < 010 > leads to microporous hematite. Maghemite (gamma -Fe2O3 (-) (delta), 0 < < 0.25) was obtained by reoxidation of magnetite. The micropores are retained during the topotactic transformation to magnetite and finally to maghemite, whereas cylindrical mesopores are formed due to rearrangement of the oxygen sublattice from hexagonal to cubic close packing during the conversion of hydrogoethite to magnetite and then to maghemite. Accordingly, three different types of maghemite particles are realized: strongly oriented multicrystalline particles, single crystalline acicular particles with micropores or crystallites having mesopores. Higher values of saturation magnetization ((s) = 74 emu g(-1)) and coercivity (H-c = 320 Oe) are obtained for single crystalline mesoporous particles. In the other cases, the smaller size of particles and larger distribution of micropores decreases sigma (s) considerably ( < 60 emu g(-1)) due to relaxation effects of spins on the surface atoms as revealed by Mossbauer spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several variants of hydrated sodium cadmium bisulfate, Na(2)Cd(2)(SO(4))(3) center dot 3H(2)O, Na(2)Cd(SO(4))(2) center dot 2H(2)O, and Na(2)Cd(SO(4))(2) center dot 4H(2)O have been synthesized, and their thermal properties followed by phase transitions have been invesigated. The formation of these phases depends on the stochiometry and the time taken for crystallization from water. Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O, which crystallizes in the trigonal system, space group P3c, is grown from the aqueous solution in about four weeks. The krohnkite type mineral Na(2)Cd(SO(4))(2) center dot 2H(2)O and the mineral astrakhanite, also known as blodite, Na(2)Cd (SO(4))(2)center dot 4H(2)O, crystallize concomittantly in about 24 weeks. Both these minerals belong to the monoclinic system(space group P2(1)/c). Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O loses water completely when heated to 250 degrees C and transforms to a dehydrated phase (cubic system, space group I (4) over bar 3d) whose structure has been established using ab initio powder diffration techniques. Na(2)Cd(SO(4))(2)center dot 2H(2)O transforms to alpha-Na(2)Cd(SO(4))(2) (space group C2/c) on heating to 150 degrees C which is a known high ionic conductor and remains intact over prolonged periods of exposure to moisture (over six months). However, when alpha-Na(2)Cd(SO(4))(2) is heated to 570 degrees C followed by sudden quenching in liquid nitrogen beta-Na(2)Cd(SO(4))(2) (P2(1)/c) is formed. beta-Na(2)Cd(SO(4))(2) takes up water from the atmosphere and gets converted completely to the krohnkite type mineral in about four weeks. Further, beta-Na(2)Cd(SO(4))(2) has a conductivity behavior comparable to the a-form up to 280 degrees C, the temperature required for the transformation of the beta- to alpha-form. These experiments demonstrate the possibility of utilizing the abundantly available mineral sources as precursors to design materials with special properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn1−xMxCO3 (M = Mg,Co,Cd), Ca1−xMx'CO3, and Ca1−x−yMxMy”CO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degradation kinetics of polycarbonate [poly(bisphenol A carbonate)] in benzene catalyzed by commercial (rutile) TiO2 (BET surface area = 11 m(2)/g), anatase TiO2 (156 m(2)/g), and 1 atom % Pt/TiO2 (111 m2/g), prepared by the solution combustion technique, was investigated at various temperatures (230-280 degreesC) and 50 atm. The time evolution of the molecular weight distribution (MWD) was determined by gel permeation chromatography (GPC) and modeled with continuous distribution kinetics to obtain the degradation rate coefficients. The rate coefficients for the catalytic degradation of polycarbonate increased by factors of 20, 3.5, and 1.3 compared to the rate coefficients for thermal degradation when catalyzed by nanosized TiO2 anatase, Pt/TiO2 anatase, and commercial TiO2, respectively, at 280 degreesC. The increased catalytic activity of combustion for synthesized TiO2 and 1% Pt/TiO2 might be due to the increased acidity and BET surface area. The activation energies, determined from the temperature dependencies of the rate coefficients, were 16.3, 21.5, and 39.1 kcal/mol for commercial TiO2, combustion-synthesized Pt/TiO2, and anatase TiO2, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze a novel Micro Opto Electro Mechanical Systems (MOEMS) race track resonator based vibration sensor. In this vibration sensor the straight portion of a race track resonator is located at the foot of the cantilever beam with proof mass. As the beam deflects due to vibration, stress induced refractive change in the waveguide located over the beam lead to the wavelength shift providing the measure of vibration. A wavelength shift of 3.19 pm/g in the range of 280 g for a cantilever beam of 1750μm×450m×20μmhas been obtained. The maximum acceleration (breakdown) for these dimensions is 2900g when a safety factor of 2 is taken into account. Since the wavelength of operation is around 1.55μm hybrid integration of source and detector is possible on the same substrate. Also it is less amenable to noise as wavelength shift provides the sensor signal. This type of sensors can be used for aerospace application and other harsh environments with suitable design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activity coefficients of oxygen in copper-tin alloys at 1 1 00°C have been measured by two different equilibrium methodsthe cell Pt, Ni + NiO I ZrOz solid electrolyte I O[Cu + Sn], cermet. Pt and the equilibrium between Cu + Sn alloys and SnO + SiO, slags established via SnO vapour. The results from both types of measurement confirm the work of Block and co-workers and show that other data are in error. The deoxidation equilibria for Sn in liquid copper, with solid SnO, as deoxidation product, have been evaluated at temperatures of interest in copper smelting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suivant la pression partielle d'oxygène, la zircone peut être conducteur ionique ou électronique. Mise au point de méthodes de mesures de f.é.m. permettant de s'affranchir des sources d'erreur introduites par ces propriétés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gibbs’ energies of formation of Pt5La, Pt5Ce, Pt5Pr, Pt5Tb and Pt5 Tm intermetallic compounds have been determined in the temperature range 870–1100 K using the solid state cell:Ta,M + MF3 /CaF2 /Pt5 M + Pt + MF3 ,TaTaM+MF3CaF2Pt5M+Pt+MF3Ta.The reversible emf of the cell is directly related to the Gibbs’ energy of formation of the Pt5M compound. The results can be summarized by the equations:DGf° á Pt5 La ñ = - 373,150 + 6 ·60 T( ±300 )J mol - 1 DGf° á Pt5 Ce ñ = - 367,070 + 5 ·79 T( ±300 )J mol - 1 DGf° á Pt5 Pr ñ = - 370,540 + 4 ·69 T( ±300 )J mol - 1 DGf° á Pt5 Tb ñ = - 372,280 + 4 ·11 T( ±300 )J mol - 1 DGf° á Pt5 Tm ñ = - 368,230 + 4 ·89 T( ±300 )J mol - 1 Unknown control sequence '\hfill'relative to the low temperature allotropic form of the lanthanide element and solid platinum as standard states The enthalpies of formation of all the Pt5M intermetallic compounds obtained in this study are in good agreement with Miedema’s model. The experimental values are more negative than those calculated using the model. The variation of the thermodynamic properties of Pt5M compounds with atomic number of the lanthanide element is discussed in relation to valence state and molar volume.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An advanced design of the solid-state cell incorporating a buffer electrode has been developed for high temperature thermodynamic measurements. The function of the buffer electrode, placed between reference and working electrodes, was to absorb the electrochemical flux of the mobile species through the solid electrolyte caused by trace electronic conductivity. The buffer electrode prevented polarization of the measuring electrode and ensured accurate data. The application of the novel design and its advantages have been demonstrated by measuring the standard Gibbs energies of formation of ternary oxides of the system Sm–Pd–O. Yttria-stabilized zirconia was used as the solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode. For the design of appropriate working electrodes, phase relations in the ternary system Sm–Pd–O were investigated at 1273 K. The two ternary oxides, Sm4PdO7 and Sm2Pd2O5, compositions of which fall on the Sm2O3–PdO join, were found to coexist with pure metal Pd. The thermodynamic properties of the ternary oxides were measured using three-phase electrodes in the temperature range 950–1425 K. During electrochemical measurements a third ternary oxide, Sm2PdO4, was found to be stable at low temperature. The standard Gibbs energies of formation (Δf(ox)Go) of the compounds from their component binary oxides Sm2O3 and PdO, can be represented by the equations: Sm4PdO7: Δf(ox)Go (J mol−1)=−34,220+0.84T(K) (±280); Sm2PdO4: Δf(ox)Go (J mol−1)=−33,350+2.49T(K) (±230); Sm2Pd2O5: Δf(ox)Go (J mol−1)=−59,955+1.80T(K) (±320). Based on the thermodynamic information, three-dimensional P–T–C and chemical potential diagrams for the system Sm–Pd–O were developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inception of cavitation in the steady flow of liquids around bodies is seen to depend upon the real fluid flow around the bodies as well as the supply of nucleating cavitation sources—or nuclei—within the fluid. A primary distinction is made between bodies having a laminar separation or not having a laminar separation. The former group is relatively insensitive to the nuclei concentration whereas the latter is much more sensitive. Except for the case of fully separated wake flows and for gaseous cavitation by diffusion the cavitation inception index tends always to be less than the magnitude of the minimum pressure coefficient and only approaches that value for high Reynolds numbers in flows well supplied with nuclei.