65 resultados para 277
Resumo:
In the present study, exfoliated graphene oxide (EGO) and reduced graphene oxide (rGO) have been used for the adsorption of various charged dyes such as methylene blue, methyl violet, rhodamine B, and orange G from aqueous solutions. EGO consists of single layer of graphite decorated with oxygen containing functional groups such as carboxyl, epoxy, ketone, and hydroxyl groups in its basal and edge planes. Consequently, the large negative charge density available in aqueous solutions helps in the effective adsorption of cationic dyes on EGO while the adsorption is negligible for anionic dyes. On the other hand, rGO that has high surface area does not possess as high a negative charge and is found to be very good adsorbent for anionic dyes. The adsorption process is followed using UV-Visible spectroscopy, while the material before and after adsorption has been characterized using physicochemical and spectroscopic techniques. Various isotherms have been used to fit the data, and kinetic parameters were evaluated. Raman and FT-IR spectroscopic data yield information on the interactions of dyes with the adsorbent. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The Hanuman langur is one of the most widely distributed and morphologically variable non-human primates in South Asia. Even though it has been extensively studied, the taxonomic status of this species remains unresolved due to incongruence between various classification schemes. This incongruence, we believe, is largely due to the use of plastic morphological characters such as coat color in classification. Additionally these classification schemes were largely based on reanalysis of the same set of museum specimens. To bring greater resolution in Hanuman langur taxonomy we undertook a field survey to study variation in external morphological characters among Hanuman langurs. The primary objective of this study is to ascertain the number of morphologically recognizable units (morphotypes) of Hanuman langur in peninsular India and to compare our field observations with published classification schemes. We typed five color-independent characters for multiple adults from various populations in South India. We used the presence-absence matrix of these characters to derive the pair-wise distance between individuals and used this to construct a neighbor-joining (NJ) tree. The resulting NJ tree retrieved six distinct clusters, which we assigned to different morphotypes. These morphotypes can be identified in the field by using a combination of five diagnostic characters. We determined the approximate distributions of these morphotypes by plotting the sampling locations of each morphotype on a map using GIS software. Our field observations are largely concordant with some of the earliest classification schemes, but are incongruent with recent classification schemes. Based on these results we recommend Hill (Ceylon Journal of Science, Colombo 21:277-305, 1939) and Pocock (Primates and carnivora (in part) (pp. 97-163). London: Taylor and Francis, 1939) classification schemes for future studies on Hanuman langurs.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
Synthesis and structure of new (Bi, La)(3)MSb(2)O(11) phases (M = Cr, Mn, Fe) are reported in conjunction with their magnetic and photocatalytic properties. XRD refinements reflect that Bi(3)CrSb(2)O(11), Bi(2)LaCrSb(2)O(11), Bi(2)LaMnSb(2)O(11) and Bi(2)LaFeSb(2)O(11) adopt KSbO(3)-type structure (space group, Pn (3) over bar). The structure can be described through three interpenetrating networks where the first is the (M/Sb)O(6) octahedral network and other two are the identical networks having Bi(6)O(4) composition. The magnetic measurements on Bi(2)LaCrSb(2)O(11) and Bi(2)LaMnSb(2)O(11) show paramagnetic behaviour with magnetic moments close to the expected spin only magnetic moments of Cr(+3) and Mn(+3). The UV-Visible diffuse reflectance spectra are broad and indicate that these materials possess a bandgap of similar to 2 eV. The photocatalytic activity of these materials has been investigated by degrading Malachite Green (MG) under exposure to UV light.
Resumo:
The synthesis, molecular structure, DNA binding and nuclease activity of Cu4O4 open-cubane tetranuclear copper(II) complex with 3-2-(ethyl amino)ethyl]imino]-2-butanoneoxime (HL) are reported for the first time. The neutral tetranuclear Cu4L4(ClO4)(4)] complex crystallizes in tetragonal space group P (4) over bar2(1)c with the unit cell parameters; a = 13.798(4) angstrom, b = 13.798(4) angstrom, c = 14.119(6) angstrom, V = 2688(16) angstrom(3), Z = 8, R = 0.0636. Symmetrically equivalent copper atoms exhibit a CuN3O3 elongated distorted octahedral coordination environment, with three nitrogen atoms of the L ligand and one oxime-oxygen atom of second L ligand at equatorial positions, one oxime-oxygen atom of the third L ligand and perchlorate oxygen at axial positions. The complex shows quasireversible cyclic voltammetric response at 0.805 V (Delta E-p = 277 mV) at 100 mV s (1) in DMF for the Cu(II)/Cu(I) redox couple. The binding study of the complex with calf-thymus DNA has been investigated using absorption spectrophotometry. The complex shows strong nuclease activity on stranded pBR 322 plasmid DNA in the presence of hydrogen peroxide and marginal nuclease activity in the presence of reducing agent (dithiothreitol). (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We estimate the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and the ice flow law. Surface velocities over Gangotri Glacier were estimated using sub-pixel correlation of Landsat TM and ETM+ imagery. Velocities range from similar to 14-85 m a(-1) in the accumulation region to similar to 20-30 ma(-1) near the snout. Depth profiles were calculated using the equation of laminar flow. Thickness varies from similar to 540 m in the upper reaches to similar to 50-60 m near the snout. The volume of the glacier is estimated to be 23.2 +/- 4.2 km(3).
Resumo:
In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
Autoxidation of pyrogallol in alkaline medium is characterized by increases in oxygen consumption, absorbance at 440 nm, and absorbance at 600 nm. The primary products are H2O2 by reduction of O-2 and pyrogallol-ortho-quinone by oxidation of pyrogallol. About 20 % of the consumed oxygen was used for ring opening leading to the bicyclic product, purpurogallin-quinone (PPQ). The absorbance peak at 440 nm representing the quinone end-products increased throughout at a constant rate. Prolonged incubation of pyrogallol in alkali yielded a product with ESR signal. In contrast the absorbance peak at 600 nm increased to a maximum and then declined after oxygen consumption ceased. This represents quinhydrone charge-transfer complexes as similar peak instantly appeared on mixing pyrogallol with benzoquinones, and these were ESR-silent. Superoxide dismutase inhibition of pyrogallol autoxidation spared the substrates, pyrogallol, and oxygen, indicating that an early step is the target. The SOD concentration-dependent extent of decrease in the autoxidation rate remained the same regardless of higher control rates at pyrogallol concentrations above 0.2 mM. This gave the clue that SOD is catalyzing a reaction that annuls the forward electron transfer step that produces superoxide and pyrogallol-semiquinone, both oxygen radicals. By dismutating these oxygen radicals, an action it is known for, SOD can reverse autoxidation, echoing the reported proposal of superoxide:semiquinone oxidoreductase activity for SOD. The following insights emerged out of these studies. The end-product of pyrogallol autoxidation is PPQ, and not purpurogallin. The quinone products instantly form quinhydrone complexes. These decompose into undefined humic acid-like complexes as late products after cessation of oxygen consumption. SOD catalyzes reversal of autoxidation manifesting as its inhibition. SOD saves catechols from autoxidation and extends their bioavailability.
Resumo:
Electrical resistance of both the electrodes of a lead-acid battery increases during discharge due to formation of lead sulfate, an insulator. Work of Metzendorf 1] shows that resistance increases sharply at about 65% conversion of active materials, and battery stops discharging once this critical conversion is reached. However, these aspects are not incorporated into existing mathematical models. Present work uses the results of Metzendorf 1], and develops a model that includes the effect of variable resistance. Further, it uses a reasonable expression to account for the decrease in active area during discharge instead of the empirical equations of previous work. The model's predictions are compared with observations of Cugnet et al. 2]. The model is as successful as the non-mechanistic models existing in literature. Inclusion of variation in resistance of electrodes in the model is important if one of the electrodes is a limiting reactant. If active materials are stoichiometrically balanced, resistance of electrodes can be very large at the end of discharge but has only a minor effect on charging of batteries. The model points to the significance of electrical conductivity of electrodes in the charging of deep discharged batteries. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.
Resumo:
The taxonomy of the Hanuman langur (Semnopithecus spp.), a widely distributed Asian colobine monkey, has been in a flux for a long time due to much disagreement between various classification schemes. However, results from a recent field-based morphological study were consistent with Hill's (Ceylon J Sci 21:277-305, 1939) species level classification scheme. Here we tested the validity of S. hypoleucos and S. priam, the two South Indian species recognized by Hill. To this end, one mitochondrial and four nuclear markers were sequenced from over 72 non-invasive samples of Hanuman langurs and S. johnii collected from across India. The molecular data were subjected to various tree building methods. The nuclear data was also used in a Bayesian structure analysis and to determine the genealogical sorting index of each hypothesized species. Results from nuclear data suggest that the South Indian population of Hanuman langur consists of two units that correspond to the species recognized by Hill. However in the mitochondrial tree S. johnii and S. priam were polyphyletic probably due to retention of ancestral polymorphism and/or low levels of hybridization. Implications of these results on conservation of Hanuman langurs are also discussed.
Resumo:
LDPC codes can be constructed by tiling permutation matrices that belong to the square root of identity type and similar algebraic structures. We investigate into the properties of such codes. We also present code structures that are amenable for efficient encoding.
Resumo:
India's energy demand is increasing rapidly with the intensive growth of economy. The electricity demand in India exceeded the availability, both in terms of base load energy and peak availability. The efficient use of energy source and its conversion and utilizations are the viable alternatives available to the utilities or industry. There are essentially two approaches to electrical energy management. First at the supply / utility end (Supply Side Management or SSM) and the other at the consumer end (Demand Side Management or DSM). This work is based on Supply Side Management (SSM) protocol and consists of design, fabrication and testing of a control device that will be able to automatically regulate the power flow to an individual consumer's premise. This control device can monitor the overuse of electricity (above the connected load or contracted demand) by the individual consumers. The present project work specially emphasizes on contract demand of every consumer and tries to reduce the use beyond the contract demand. This control unit design includes both software and hardware work and designed for 0.5 kW contract demand. The device is tested in laboratory and reveals its potential use in the field.