72 resultados para 2,4-DICHLOROPHENOXYACETIC ACID 2,4-D
Resumo:
C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).
Resumo:
M r=670.02, monoclinic, C2/c, a= 31.003(4), b=11.037(2), c=21.183(3)A, fl= 143.7 (1) °, V= 4291.2/k 3, D,n = 2.06, D x = 2.07Mgm -3, Z=8, MoKa, 2=0.7107/k, /~=7.45 mm -1, F(000) = 2560, T= 293 K, R = 0.061 for 1697 observed reflections. The bromphenol blue molecule consists essentially of three planar groupings: the sulfonphthalein ring system and two dibromophenol rings attached to the tetrahedral C atom of the five-membered ring of the sulfonphthalein system. The dibromophenol rings are inclined with resPect to each other at 73 ° whereas they make angles of 85 and 68 ° with respect to the sulfonphthalein system. The molecules aggregate into helical columns with the non-polar regions of the molecules in the interior and the polar regions on the surface. The columns are held together by a network of hydrogen bonds.
Resumo:
In the synchronous embryogenesis system of sandalwood developed in our laboratory, we observed that the early events of differentiation from freshly induced callus (stage 0) are accomplished in three distinct stages viz., preglobular masses (stage 1), globular embryos (stage 2), and bipolar embryos (stage 3). Transition from stage 0 to 1 was accomplished using 2,4-D and involves a stage specific appearance of two polypeptides of 15 and 30 kDa molecular weight. A 24 kDa polypeptide that was detected as a marked band in extracts of primary callus was not detected in stages 1, 2, and 3. Further, the tissue level of a 50 kDa glycoprotein decreased during transition from stage 2 to stage 3. However, the levels of glycoproteins in the medium were markedly higher in stage 0 cultures compared to those in stage 1. The activities of a protein kinase, glycosidase, and xylanase increased markedly with progressing embryogenesis. Our observations suggest that in addition to being controlled at the level of stage-specific gene expression, somatic embryogenesis in sandalwood is also regulated at the level of controls on cell wall flexibility and posttranslational changes in the pool of preexisting proteins.
Resumo:
Direct regeneration of somatic embryos was obtained from immature zygotic embryos of Dalbergia latifolia. Immature embryos dissected from green pods 90 d after flowering gave the highest frequency of somatic embryo formation. Preculture on high 2,4-D medium for 4 weeks induced direct somatic embryogenesis, which was expressed during the second culture phase in the presence of low 2,4-D along with a high sucrose concentration. Embryos were separated and transferred to the maturation medium containing MS + 0.5-1.0 mg/L BAP, where embryos developed into plantlets. Somatic embryos failed to convert into complete plants without BAP treatment. This method of direct regeneration of somatic embryos without a callus phase has direct application for genetic manipulation studies.
Resumo:
The dipole moments of thioglycollic (2.28 D), β-mereaptopropionic (2.25 D), thiomalic (2.47 D), malic (3.12 D), and dithiodiacetic (3.17 D) acids have been measured in dioxan at 35° C. Using the scheme of Smith, Ree, Magee and Eyring, the formal charge distribution in and hence the electric moments of these acids have been evaluated, compared with the theoretical moments, and discussed in terms of their various possible structures. Infrared spectra of these acids (liquid and nujol mull) indicate association through hydrogen bonding. These bonds are broken in solution. © 1969.
Resumo:
The dipole moments of thioglycollic (2.28 D), β-mereaptopropionic (2.25 D), thiomalic (2.47 D), malic (3.12 D), and dithiodiacetic (3.17 D) acids have been measured in dioxan at 35° C. Using the scheme of Smith, Ree, Magee and Eyring, the formal charge distribution in and hence the electric moments of these acids have been evaluated, compared with the theoretical moments, and discussed in terms of their various possible structures. Infrared spectra of these acids (liquid and nujol mull) indicate association through hydrogen bonding. These bonds are broken in solution.
Solution structure of O-glycosylated C-terminal leucine zipper domain of human salivary mucin (MUC7)
Resumo:
Solution structures of a 23 residue glycopeptide II (KIS* RFLLYMKNLLNRIIDDMVEQ, where * denotes the glycan Gal-beta-(1-3)-alpha-GalNAc) and its deglycosylated counterpart I derived from the C-terminal leucine zipper domain of low molecular weight human salivary mucin (MUC7) were studied using CD, NMR spectroscopy and molecular modeling. The peptide I was synthesized using the Fmoc chemistry following the conventional procedure and the glycopeptide II was synthesized incorporating the O-glycosylated building block (N alpha-Fmoc-Ser-[Ac-4,-beta-D-Gal-(1,3)-Ac(2)alpha-D-GalN(3)]-OPfp) at the appropriate position in stepwise assembly of peptide chain. Solution structures of these glycosylated and nonglycosylated peptides were studied in water and in the presence of 50% of an organic cosolvent, trifluoroethanol (TFE) using circular dichroism (CD), and in 50% TFE using two-dimensional proton nuclear magnetic resonance (2D H-1 NMR) spectroscopy. CD spectra in aqueous medium indicate that the apopeptide I adapts, mostly, a beta-sheet conformation whereas the glycopeptide II assumes helical structure. This transition in the secondary structure, upon glycosylation, demonstrates that the carbohydrate moiety exerts significant effect on the peptide backbone conformation. However, in 50% TFE both the peptides show pronounced helical structure. Sequential and medium range NOEs, C alpha H chemical shift perturbations, (3)J(NH:C alpha H) couplings and deuterium exchange rates of the amide proton resonances in water containing 50% TFE indicate that the peptide I adapts alpha-helical structure from Ile2-Val21 and the glycopeptide II adapts alpha-helical structure from Ser3-Glu22. The observation of continuous stretch of helix in both the peptides as observed by both NMR and CD spectroscopy strongly suggests that the C-terminal domain of MUC7 with heptad repeats of leucines or methionine residues may be stabilized by dimeric leucine zipper motif. The results reported herein may be invaluable in understanding the aggregation (or dimerization) of MUC7 glycoprotein which would eventually have implications in determining its structure-function relationship.
Resumo:
(1S,4R,5R,8S, IOR,12S)-4-Hydroxy-15,16-epoxycleroda-2,13 (16), 14-trieno- 17,12:18,1-biscarbolactone,C20H2206, Mr = 358.2, m.p. = 453-454 K,orthorhombic, P212121, a = 7.3869 (6), b = 11.986 (1),c=19.896(2) A, V=1761.65A 3, Z=4, D x=1.351, Din(by flotation)= 1.349gem -3, 2(CuKa)=1.5418 A, /l = 8.36 cm -1, F(000) = 760, T= 295 K,R = 0.0432 for 1662 observed reflections. Two terpenerings, two ~-lactones, two methyl groups, a tertiary hydroxyl group and a fl-substituted furan ring are present in the structure. The H atoms at C(12) and C(8) are a- and fl-oriented. The terpene ring A is locked into a boat conformation by the C(1)-C(4) lactone bridge. The furan ring is attached equatoriaUy at atom C(12). The hydroxyl group is involved in intramolecular hydrogen bonding.
Resumo:
C~HaO 4, Mr=204.2, monoclinic, P2Jn,a=3.900(1), =37.530(6), c=6.460(1)A, fl=103.7 (1) °, V= 918.5 (5) A 3, Z = 4, D m = 1.443, D x --- 1.476 Mg m -3, Cu Ks, 2 = 1.5418 ,/k, /t = 0.86 mm -~, F(000) = 424, T= 293 K, R = 0.075 for 1019 significant reflections. Molecules pack in fl-type stacking mode which is characterized by the close packing of parallel and nearly planar reactive double bonds with a separation of 3.900/~ along the a axis.The syn head-head dimer obtained is the direct consequence of this packing arrangement. Molecular packing is stabilized by intermolecular C-H...O hydrogen bonding. Analysis of acetoxy...acetoxy interactions in the acetoxy compounds retrieved from the Cambridge Structural Database reveal that the majority of them are anti-dipolar.
Resumo:
Abstract. C25H44N20 , M r= 388.6, orthorhombic, P21212 I, a = 6.185 (2), b = 18.123 (2), c = 20.852 (2) A, U= 2337.2 A 3, Z = 4, D x = 1.104 Mg m -a, 2(Cu Ka) = 1.5418 A,/~ = 0.47 mm -~, F(000) = 864, T= 293 K. Final R - 0.038 for 1791 reflections with I >_ 3a(I). Rings A and C are in chair conformation. Ring B is in an 8fl,9a-half-chair conformation. Ring D adopts a conformation in between 13fl,14a-half-chair and 13t-envelope. There is a quasitrans fusion of rings A and B, whilst ring systems B/C and C/D are trans fused about the bonds C(8)-C(9)and C(13)-C(14).
Resumo:
The morphogenetic pathway leading to plant differentiation in tobacco mesophyll protoplasts could be regulated. The course of development via organogenesis or embryogenesis was controlled by manipulating nutrient media, culture conditions and hormone requirements. A lowering of molarity of medium after 5 weeks of protoplast culture, inclusion of GA3 (0.5 mg/l) in the medium for first 8 weeks of culture and exclusion of reduced nitrogen in the medium resulted in shoot organogenesis, while maintenance of higher molarity of the medium till 8 weeks, reduced nitrogen in the medium and removal of 2, 4-D after 5 weeks of culture induced embryogenesis. Regenerability of viable plants was obtained by both developmental pathways. The implications of tobacco embryogenesis system in plant molecular genetics were highlighted.
Resumo:
The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+(CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2) angstrom, b = 4.517(2) angstrom, c = 20.370(3) angstrom, beta = 106.56-degrees(1): V = 1041.9(2) angstrom3, lambda = 1.541 angstrom; mu = 53.4 1; T = 296-degrees; Z = 4, D(x) = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudosymmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered
Resumo:
Attempts have been made to understand the nature and significance of hydrogen bonds of the type X-H-C (X = 0, N) . These unusual interactions have been discussed recently. Crystallographic studies on 17a-ethynylandrosta- 2,4-dieno[2,3-d]dihydroxazol1-7 8-01 (donazole) provide direct evidence of such an 0-H.0-C interaction. Ab initio computations, IR spectroscopy, and database studies show that these hydrogen bonds, while uncommon, are energetically and structurally significant.
Resumo:
The design of folded structures in peptides containing the higher homologues of alpha-amino acid residues requires the restriction of the range of local conformational choices In alpha-amino acids stereochemically constrained residues like alpha,alpha-dialkylated residue, aminoisobutyric acid (Aib), and D-Proline ((D)Pro) have proved extremely useful in the design of helices and hairpins in short peptides Extending this approach, backbone substitution and cyclization are anticipated to bc useful in generating conformationally constrained beta- and gamma-residues This brief review provides a survey of work on hybrid peptide sequences concerning the conformationally constrained gamma-amino acid residue 1-aminomethyl cyclohexane acetic acid, gabapentin (Gpn) This achiral, beta,beta-disubstituted, gamma-residue strongly favors gauche-gauche conformations about the C-alpha-C-beta (0(2)) and C-alpha-C-gamma (0(1)) bonds, facilitating local folding The Gpn residue can adopt both C-7 (NH1 -> CO1) and C-9 (CO1 (I)<- NH1+I) hydrogen bonds which are analogous to the C-5 and C7 (gamma-turn) conformations at alpha-residues In conjunction with adjacent residues, Gpn may be used in ay and gamma alpha segments to generate C-12 hydrogen bonded conformations which may be considered as expanded analogs of conventional beta-turns The structural characterization of C-12 helices, C-12/C-10 helices with mixed hydrogen bond directionalities and beta-hairpins incorporating Gpn residues at the turn segment is illustrated (C) 2010 Wiley Periodicals, Inc Biopolymers (Pept Sci) 94 733-741 2010
Resumo:
Telomeric DNA of a variety of vertebrates including humans contains the tandem repeat d(TTAGGG)(n). We have investigated the structural properties of the human telomeric repeat oligonucleotide models d(T(2)AG(3))(4), d(G(3)T(2)A)(3)G(3), and d(G(3)T(2)AG(3)) using CD, gel electrophoresis, and chemical probing techniques. The sequences d(G(3)T(2)A)(3)G(3) and d(T(2)AG(3))(4) assume an antiparallel G quartet structure by intramolecular folding, while the sequence d(G(3)T(2)AG(3)) also adopts an antiparallel G quartet structure but by dimerization of hairpins. In all the above cases, adenines are in the loop. The TTA loops are oriented at the same end of the G tetrad stem in the case of hairpin dimer. Further, the oligonucleotide D(G(3)T(2)AG(3)) forms a higher order structure by the association of two hairpin dimers via stacking of G tetrad planes. Here we show that N-7 of adenine in the hairpin dimer is Hoogsteen hydrogen-bonded. The partial reactivity of loop adenines with DEPC in d(T(2)AG(3))(4) suggests that the intramolecular G quartet structure is highly polymorphic and structures with different loop orientations and topologies are formed in solution. Intra- and interloop hydrogen bonding schemes for the TTA loops are proposed to account for the observed diethyl pyrocarbonate reactivities of adenines. Sodium-induced G quartet structures differ from their potassium-induced counterparts not only in stability but also in loop conformation and interactions. Thus, the overall structure and stability of telomeric sequences are modulated by the cation present, loop sequence, and the number of G tracts, which might be important for the telomere function.