103 resultados para 190-1175
Resumo:
Ten different tRNAGly1 genes from the silk worm, Bombyx mori, have been cloned and characterized. These genes were transcribed in vitro in homologous nuclear extracts from the posterior silk gland (PSG) or nuclear extracts derived from the middle silk gland or ovarian tissues. Although the transcription levels were much higher in the PSG nuclear extracts, the transcriptional efficiency of the individual genes followed a similar pattern in all the extracts. Based on the levels of in vitro transcription, the ten tRNAGly1 genes could be divided into three groups, viz., those which were transcribed at very high levels (e.g., clone pR8), high to medium levels (e.g., pBmil, pBmpl, pBmhl, pBmtl) and low to barely detectable levels (e.g., pBmsl, pBmjl and pBmkl). The coding sequences of all these tRNA genes being identical, the differential transcription suggested that the flanking sequences modulate their transcriptional efficiency. The presence of positive and negative regulatory elements in the 5' flanking regions of these genes was confirmed by transcription competition experiments. A positive element was present in the immediate upstream A + T-rich sequences in all the genes, but no consensus sequences correlating to the transcriptional status could be generated. The presence of negative elements on the other hand was indicated only in some of the genes and therefore may have a role in the differential transcription of these tRNAGly genes in vivo.
Resumo:
Electrolytes based on polyethylene glycol (PEG, mol.wt.8000) and LiCl of compositions, (PEG)(x)LiCl, x=4, 6, 8, 10, 12, 40, 60, where x is the O/Li ratio, were prepared by solution casting from methanol solutions. FTIR studies indicate that the ether oxygens of the polymer chain participate in Li+ ion conduction. The presence of a salt-polymer complex that melts around 190 degrees C was evidenced by DSC measurements for the electrolytes with compositions x<12. The highest conductivity was obtained at the composition x=10 which was attributed to the presence of a mostly amorphous compound. NMR measurements indicated two regions of motional narrowing, one attributable to the glass transition and another to translational diffusion.
Resumo:
This study explores the utility of polarimetric measurements for discriminating between hydrometeor types with the emphasis on (a) hail detection and discrimination of its size, (b) measurement of heavy precipitation, (c) identification and quantification of mixed-phase hydrometeors, and (d) discrimination of ice forms. In particular, we examine the specific differential phase, the backscatter differential phase, the correlation coefficient between vertically and horizontally polarized waves, and the differential reflectivity, collected from a storm at close range. Three range–height cross sections are analyzed together with complementary data from a prototype WSR-88D radar. The case is interesting because it demonstrates the complementary nature of these polarimetric measurands. Self-consistency among them allows qualitative and some quantitative discrimination between hydrometeors.
Resumo:
Four polarimetric measurands were collected in the stratiform region of a mesoscale convective system. The four are the reflectivity factor, the differential reflectivity, the correlation coefficient between orthogonal copolar echoes, and the differential propagation constant. Most striking is a signature of large aggregates (about 10 mm in size) seen in the differential phase through the melting layer. Another significant feature is an abrupt notch in the correlation coefficient that occurs towards the bottom of the bright band. Aircraft observations and a one-dimensional cloud model are used to explain some polarimetric measurements and to infer the presence of aggregates, graupel, and supercooled cloud water in the stratiform region. These unique observations and model data provide inferences concerning the presence of graupel and the growth of large aggregates in the melting layer.
Resumo:
An angle invariance property based on Hertz's principle of particle dynamics is employed to facilitate the surface-ray tracing on nondevelopable hybrid quadric surfaces of revolution (h-QUASOR's). This property, when used in conjunction with a Geodesic Constant Method, yields analytical expressions for all the ray-parameters required in the UTD formulation. Differential geometrical considerations require that some of the ray-parameters (defined heuristically in the UTD for the canonical convex surfaces) be modified before the UTD can be applied to such hybrid surfaces. Mutual coupling results for finite-dimensional slots have been presented as an example on a satellite launch vehicle modeled by general paraboloid of revolution and right circular cylinder.
Resumo:
Surface flashover characteristics of solid spacers in a rod-plane configuration have been investigated in SF6, at pressures to 400 kPa, for switching impulse voltages to determine the effect of spacer, spacer materials and polarity of applied impulses. The effect of spacer material on the flashover voltage is not significant. For negative polarity impulses, the influence of the spacer is also insignificant. But for positive polarity impulses, at pressures < 200 kPa, the spacer efficiency becomes > 1.0. On the other hand, at pressures > 200 kPa, the presence of spacer drastically reduces the flashover voltage of the system. At about atmospheric pressure also, the spacer efficiency in air has been found to be > 1.0, with the same electrode geometry.
Resumo:
We have studied electronic states of various fragments of C-60 within the Pariser-Parr-Pople (PPP) model and have obtained structural, magnetic and spectral properties of these molecules. The fragments studied include corannulene, fluoranthene and pyracylene. Pyracylene is studied using the exact valence bond (VB) approach while fluoranthene and corannulene are studied using a novel restricted CI technique which employs molecular orbitals for constructing the VB functions. The electronic excitations, bond order and ring currents are calculated for these systems. From these studies, the wide range of absorptions in C-60 can be viewed as those localized on pyracylene units or on the corannulene/fluoranthene units. The bond orders and ring currents show the hexagons to be similar to benzene rings. The pentagon-hexagon bonds are also found to be longer than the hexagon-hexagon bonds.
Resumo:
The transformation technique is a tool FIR designing 2-D filters, useful for the design of specially shaped filters with passband/stopband regions not centred around the origin. The authors extend this technique to design two types or filters. A notch filter has a stopband centred about a small region in the 2-D frequency plane. The authors propose an extension to the transformation technique with the windowing concept to achieve the design of notch filters. A directional filter has a passband extending fully along: a straight line pacing through the origin. The transformation technique is: further extended to yield such directional filters. Design and application examples for both these fillers are also presented.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
Thermal analysis and interrupted quench experiments have been carried out to study the formation of beta-FeSiAl5 and (Be-Fe)-BeSiFe2Al8 phases in Al-7Si-0.3Mg alloy with and without Be addition. In the base alloy with 0.6% Fe (without Be addition), a needle- and plate-shaped beta-phase is present in the interdendritic regions and is formed by a ternary eutectic reaction. In the Be- added alloy with 0.6% Fe, a Be-Fe phase of Chinese script and polygon shapes grows along with the primary alpha-Al dendrites, leading to superior mechanical properties. It is proposed that this Be-Fe phase is formed by a peritectic reaction. Be addition has also resulted in some grain refinement.
Resumo:
The vast biodiversity of nature provides bioactive compounds that may be useful in the fight against chronic diseases. This study was designed to investigate the protective effects of the ethanol extract of Spirulina laxissima West (Pseudanabaenaceae) (EESL) against carbon tetrachloride (CCl4) induced hepatotoxicities in rats. Male albino rats of Sprague-Dawley strain were treated orally with the ethanol extract of S. laxissima (50, 100 mg kg(-1) body wt.) 1 h before each CCl4 administration. The ethanol extract of S. laxissima showed the maximum antioxidant property in vitro. There were statistically significant losses in the activities of antioxidant enzymes and an increase in TBARS and liver function marker enzymes in the serum of the CCl4-treated group compared with the control group. However, all the tested groups were able to counteract these effects. The antioxidant activity of the extracts might be attributable to its proton-donating ability, as evidenced by DPPH. In the present study, the decline in the level of antioxidant observed in CCl4-treated rats is a clear manifestation of excessive formation of radicals and activation of the lipid peroxidation system resulting in tissue damage. The significant increases in the concentration of antioxidant enzymes in tissues of animals treated with CCl4 + EESL indicate the antioxidant effect of EESL. This study suggests that EESL can protect the liver against CCl4-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and radical-scavenging effects.
Hot deformation and microstructural evolution in an alpha(2)/O titanium aluminide alloy Ti-25Al-15Nb
Resumo:
Deformation processing and microstructural development of an alpha(2)/O aluminide alloy Ti-25Al-15Nb (at.%) was studied in the temperature range of 950 to 1200 degrees C and strain rate range of 10(-3) to 100 s(-1). Regions of processing and instability were identified using dynamic materials model. Dynamic recrystallization (DRX) of alpha(2)/O phase and p phase were seen to occur in the region of 950 to 1050 degrees C/0.001 to 0.05 s(-1) and 1125 to 1175 degrees C/0.001 to 0.1 s(-1), respectively. Unstable flow was seen to occur in the region of 1050 to 1190 degrees C/10 to 100 s(-1). Thermal activation analysis showed that DRX of alpha(2)/O and beta was controlled by cross-slip.
Resumo:
The potential predictability of the Indian summer monsoon due to slowly varying sea surface temperature (SST) forcing is examined. Factors responsible for limiting the predictability are also investigated. Three multiyear simulations with the R30 version of the Geophysical Fluid Dynamics Laboratory's climate model are carried out for this purpose, The mean monsoon simulated by this model is realistic including the mean summer precipitation over the Indian continent. The interannual variability of the large-scale component of the monsoon such as the "monsoon shear index" and its teleconnection with Pacific SST is well simulated by the model in a 15-yr integration with observed SST as boundary condition. On regional scales, the skill in simulating the interannual variability of precipitation over the Indian continent by the model is rather modest and its simultaneous correlation with eastern Pacific SST is negative but poor as observed. The poor predictability of precipitation over the Indian region in the model is related to the fact that contribution to the interannual variability over this region due to slow SST variations [El Nino-Southern Oscillation (ENSO) related] is comparable to those due to regional-scale fluctuations unrelated to ENSO SST. The physical mechanism through which ENSO SST tend to produce reduction in precipitation over the Indian continent is also elucidated. A measure of internal variability of the model summer monsoon is obtained from a 20-yr integration of the same model with fixed annual cycle SST as boundary conditions but with predicted soil moisture and snow cover. A comparison of summer monsoon indexes between this run and the observed SST run shows that the internal oscillations can account for a large fraction of the simulated monsoon variability. The regional-scale oscillations in the observed SST run seems to arise from these internal oscillations. It is discovered that most of the interannual internal variability is due to an internal quasi-biennial oscillation (QBO) of the model atmosphere. Such a QBO is also found in the author's third 18-yr simulation in which fixed annual cycle of SST as well as soil moisture and snow cover are prescribed. This shows that the model QBO is not due to land-surface-atmosphere interaction. It is proposed that the model QBO arises due to an interaction between nonlinear intraseasonal oscillations and the annual cycle. Spatial structure of the QBO and its role in limiting the predictability of the Indian summer monsoon is discussed.