147 resultados para 118-734B
Resumo:
Equations for solid-state decompositions which are controlled by the phase-boundary movement and nucleation have been examined using ammonium perchlorate/polystyrene propellant decomposition at 503 K and 533 K. It was found that 3 different equations governed by the nucleation process show a good fit of data at these temperatures. However, the best fit was obtained for the following Avrami-Erofeev equation, [-In (1 - α]1/4=kt.
Resumo:
Transparent glasses in the system 0.5Li(2)O-0.5K(2)O-2B(2)O(3) (LKBO) were fabricated via the conventional melt quenching technique. Amorphous and glassy nature of the samples was confirmed by X-ray diffraction and differential scanning calorimetry (DSC) respectively. Complex dielectric and impedance studies were conducted on the samples at different temperatures in the 100 Hz-10 MHz frequency range. ac conductivity was calculated from the dielectric data and the conductivity relaxation was found to obey the Jonscher's law. The Nyquist's plots (Z `'(omega) vs. Z'(omega)) showed single suppressed semicircles at all the temperatures under study indicating the non ideal Debye type relaxation process to be active. Activation energies for conduction and relaxation process were calculated using the Arrhenius relation. The UV-visible optical transmission spectra was shown a wide transmission window and calculated optical band gap was found to be 5.67 eV.
Resumo:
Sensitive soils, in general, are prone to mechanical disturbances while sampling, handling, and testing. This necessitates the prediction of true field behavior. The compressibility response of such soils is typical of having three zones, mechanistically explained as nonparticulate, transitional, and particulate. Such zoning has enabled the development of a simple method to predict the field compressibility response of the sample. The field compression curve with sigmact act as the most probable yield stress is considered to reflect 0% disturbance. By a comparison of experimentally determined sigmac and sigmact, it is possible to estimate the degree of sample disturbance. When the value of sigmac is closer to sigmact, the sampling disturbance approaches zero. As the value of sigmac reduces, the degree of sampling disturbance increases. The possibility of using this degree of sample disturbance from compressibility data to obtain other true properties from laboratory results of the sampled specimens has been examined.
Resumo:
This paper may be considered as a sequel to one of our earlier works pertaining to the development of an upwind algorithm for meshless solvers. While the earlier work dealt with the development of an inviscid solution procedure, the present work focuses on its extension to viscous flows. A robust viscous discretization strategy is chosen based on positivity of a discrete Laplacian. This work projects meshless solver as a viable cartesian grid methodology. The point distribution required for the meshless solver is obtained from a hybrid cartesian gridding strategy. Particularly considering the importance of an hybrid cartesian mesh for RANS computations, the difficulties encountered in a conventional least squares based discretization strategy are highlighted. In this context, importance of discretization strategies which exploit the local structure in the grid is presented, along with a suitable point sorting strategy. Of particular interest is the proposed discretization strategies (both inviscid and viscous) within the structured grid block; a rotated update for the inviscid part and a Green-Gauss procedure based positive update for the viscous part. Both these procedures conveniently avoid the ill-conditioning associated with a conventional least squares procedure in the critical region of structured grid block. The robustness and accuracy of such a strategy is demonstrated on a number of standard test cases including a case of a multi-element airfoil. The computational efficiency of the proposed meshless solver is also demonstrated. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Described are methods which can be used by developing countries to affordably obtain the energy without ruining the environment. The approaches mix efficient end-use technologies with modest increases in generating capacity. (CW).
Resumo:
Soil properties and their behavior, apart from stress history, are influenced markedly by physicochemical characteristics of the constituent clay and nonclay minerals and their relative proportions. Atterberg limits and Skempton’s colloidal activity, which are simple quantitative parameters, reflect the composite effects of the soil constituents and their interactions with pore fluid. Micromechanistic interpretations of these parameters have been provided in this paper. It has been shown that, in general, the liquid limit of fine-grained soils reflects the physicochemical potential and that each of the factors of Skempton’s colloidal activity are interdependent. It has been illustrated that property correlations with colloidal activity, as well as with Atterberg limits, result in involved interrelationships due to the interdependence of the parameters.
Resumo:
An experimental study aimed at understanding the deformational behavior of conventionally reinforced steel fiber concrete beams in pure bending is reported in this paper. One group of beams has steel fibers dispersed in the entire volume of the beam and the second has fibers dispersed over half the depth of the beam on the tension side. A comparative study of the deformational characteristics of these beams has been made. Half-depth fiber inclusion, requiring only half the quantity of fibers of full-depth inclusion, is found to be equally effective in improving the deformational behavior of beams. Thus, by such modes of inclusion of fibers, an economical and efficient use of expensive steel fibers can be realized.
Resumo:
It is proved that the Riesz means S(R)(delta)f, delta > 0, for the Hermite expansions on R(n), n greater-than-or-equal-to 2, satisfy the uniform estimates \\S(R)(delta)f\\p less-than-or-equal-to C \\f\\p for all radial functions if and only if p lies in the interval 2n/(n + 1 + 2delta) < p < 2n/(n - 1 - 2delta).
Resumo:
(I)Lantadene-B: C35H52O5,M r =552.80, MonoclinicC2,a=25.65(1),b=6.819(9),c=18.75(1) Å,beta=100.61(9),V=3223(5) Å3,Z=4,D x =1.14 g cm–3 CuKagr (lambda=1.5418A),mgr=5.5 cm–1,F(000)=1208,R=0.118,wR=0.132 for 1527 observed reflections withF o ge2sgr(F o ). (II)Lantadene-C: C35H54O5·CH3OH,Mr=586.85, Monoclinic,P21,a=9.822(3),b=10.909(3),c=16.120(8)Å,beta=99.82(4),V=1702(1)Å3,Z=2,D x =1.145 g cm–3, MoKagr (lambda=0.7107Å), mgr=0.708 cm–1 F(000)=644,R=0.098, wR=0.094 for 1073 observed reflections. The rings A, B, C, D, and E aretrans, trans, trans, cis fused and are in chair, chair, sofa, half-chair, chair conformations, respectively, in both the structures. In the unit cell the molecules are stabilized by O-HctdotO hydrogen bonds in both the structures, however an additional C-HctdotO interaction is observed in the case of Lantadene-C.
Resumo:
Studies on compressibility and shear strength aspects are the concern of many investigators concerned with partly saturated soils. In soil engineering connected with partly saturated soils, there are no approaches connecting soil states and stress conditions. The present investigation is essentially a step in this direction. A generalized state parameter, identified with regard to material states is shown to be related to the compressibility and shear strength. The involved parameters are simple and normally determined in routine investigations. The advantage of this approach is that changes in soil states due to external stress conditions and the associated changes in strength can be examined particularly when different types of soils are involved.
Resumo:
Parkin (1978) suggested the velocity method based on the observation that the theoretical rate of consolidation and time factor plot on a log-log scale yields an initial slope of 1:2 up to 50% consolidation. A new method is proposed that is an improvement over Parkin's velocity method because it minimizes the problems encountered in using that method. The results obtained agree with the other methods in use.
Resumo:
A successful protein-protein docking study culminates in identification of decoys at top ranks with near-native quaternary structures. However, this task remains enigmatic because no generalized scoring functions exist that effectively infer decoys according to the similarity to near-native quaternary structures. Difficulties arise because of the highly irregular nature of the protein surface and the significant variation of the nonbonding and solvation energies based on the chemical composition of the protein-protein interface. In this work, we describe a novel method combining an interface-size filter, a regression model for geometric compatibility (based on two correlated surface and packing parameters), and normalized interaction energy (calculated from correlated nonbonded and solvation energies), to effectively rank decoys from a set of 10,000 decoys. Tests on 30 unbound binary protein-protein complexes show that in 16 cases we can identify at least one decoy in top three ranks having <= 10 angstrom backbone root mean square deviation from true binding geometry. Comparisons with other state-of-art methods confirm the improved ranking power of our method without the use of any experiment-guided restraints, evolutionary information, statistical propensities, or modified interaction energy equations. Tests on 118 less-difficult bound binary protein-protein complexes with <= 35% sequence redundancy at the interface showed that in 77% cases, at least 1 in 10,000 decoys were identified with <= 5 angstrom backbone root mean square deviation from true geometry at first rank. The work will promote the use of new concepts where correlations among parameters provide more robust scoring models. It will facilitate studies involving molecular interactions, including modeling of large macromolecular assemblies and protein structure prediction. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 787-796, 2011.