112 resultados para 060100 BIOCHEMISTRY AND CELL BIOLOGY
Resumo:
Individual copies of tRNA1Gly from within the multigene family in Bombyx mori could be classified based on in vitro transcription in homologous nuclear extracts into three categories of highly, moderately, or weakly transcribed genes. Segregation of the poorly transcribed gene copies 6 and 7, which are clustered in tandem within 425 base pairs, resulted in enhancement of their individual transcription levels, but the linkage itself had little influence on the transcriptional status. For these gene copies, when fused together generating a single coding region, transcription was barely detectable, which suggested the presence of negatively regulating elements located in the far flanking sequences. They exerted the silencing effect on transcription overriding the activity of positive regulatory elements. Systematic analysis of deletion, chimeric, and mutant constructs revealed the presence of a sequence element TATATAA located beyond 800 nucleotides upstream to the coding region acting as negative modulator, which when mutated resulted in high level transcription. Conversely, a TATATAA motif reintroduced at either far upstream or far downstream flanking regions exerted a negative effect on transcription. The location of cis-regulatory sequences at such farther distances from the coding region and the behavior of TATATAA element as negative regulator reported here are novel. These element(s) could play significant roles in activation or silencing of genes from within a multigene family, by recruitment or sequestration of transcription factors.
Resumo:
Isothermal titration calorimetry measurements of the binding of 2′-fucosyllactose, lactose, N-acetyllactosamine, galactopyranose, 2-acetamido-2-deoxygalactopyranoside, methyl α-N-dansylgalactosaminide (Me-α-DNS-GalN), methyl α-D-galactopyranoside, methyl β-D-galactopyranoside, and fucose to Erythrina corallodendron lectin (ECorL), a dimer with one binding site per subunit, were performed at 283-286 and 297-299 K. The site binding enthalpies, ΔHb, with the exception of Me-α-DNS-GalN, are the same at both temperatures and range from −47.1 ± 1.0 kJ mol−1 for N-acetyllactosamine to −4.4 ± 0.3 kJ mol−1 for fucose, and the site binding constants range from 3.82 ± 0.9 × 105 M−1 for Me-α-DNS-GalN at 283.2 K to 0.46 ± 0.05 × 103 M−1 for fucose at 297.2 K. The binding reactions are mainly enthalpically driven except for fucose and exhibit enthalpy-entropy compensation. The binding enthalpies of the disaccharides are about twice the binding enthalpies of the monosaccharides in contrast to concanavalin A where the binding enthalpies do not double for the disaccharides. Differential scanning calorimetry measurements show that denaturation of the ECorL dimer results in dissociation into its monomer subunits. The binding constants from the increase in denaturation temperature of ECorL in the presence of saccharides are in agreement with values from isothermal titration calorimetry results. The thermal denaturation of ECorL occurs around 333 K, well below the 344-360 K denaturation temperature of other legume lectins of similar size and tertiary structure, undoubtedly due to the difference in its quaternary structure relative to other legume lectins. This is also apparent from the independent unfolding of its two domains.
Resumo:
An epitope scan analysis of the whole sequence of avidin and core streptavidin using polyclonal antibodies to these two antigens reveal the presence of multiple common epitopes in both the proteins. These antigenic determinants consist mostly of either identical or similar residues. The antibody recognition sites in both antigens are shown to be localized to homologous regions.
Resumo:
The luteotropic action of estrogen (E) was investigated using immature pseudopregnant rat as the model and CGS 16949A (Fadrozole hydrochloride), a potent aromatase inhibitor (AI), to block E synthesis. Aromatase activity could be inhibited by administering CGS 16949A (50 mu g/day/rat) via a mini osmotic Alzet pump (model 2002) for 3 days during pseudopregnancy. This resulted in significant reduction of serum (40%, P < 0.05) and intraovarian (70.6%, P < 0.001) estradiol-17 beta (E(2)) levels. The serum and intraovarian progesterone (P-4) levels as analyzed on day 4 of pseudopregnancy were also reduced by greater than or equal to 50% (for both, P < 0.01). Simultaneous administration of estradiol-3-benzoate (E(2)B) via an Alzet pump during the Al: treatment period at a dose of 1 mu g/day could completely reverse the Al induced reduction in P-4 secretion. The luteal cells of experimental rats depleted of E in vivo showed a significantly reduced response upon incubation with hCG or dbcAMP in vitro (P < 0.05 and 0.001, respectively). Addition of E(2) (500 pg/tube) at the time of in vitro incubation was able to partially increase the responsiveness to hCG. The luteal cell LH/hCG receptor content and the affinity of hCG binding to the receptor remained unchanged following AI treatment in vivo. Both esterified and total cholesterol content of luteal cells of rats treated with Al in vivo was significantly high (P < 0.05) suggesting that E lack results in an impairment in cholesterol utilization for steroidogenesis. The results clearly show that E regulates luteal function in the pseudopregnant rat by acting at a non-cAMP mediated event and this perhaps involves facilitation of cholesterol utilization at the mitochondrial level for P-4 synthesis.
Resumo:
Deoxyhypusine synthase, an NAD(+)-dependent enzyme, catalyzes the first step in the post-translational synthesis of an unusual amino acid, hypusine (N-epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic initiation factor 5A precursor protein. Two putative deoxyhypusine synthase (DHS) sequences have been identified in the Leishmania donovani genome, which are present on chromosomes 20: DHSL20 (DHS-like gene from chromosome 20) and DHS34 (DHS from chromosome 34). Although both sequences exhibit an overall conservation of key residues, DHSL20 protein lacks a critical lysine residue, and the recombinant protein showed no DHS activity in vitro. However, DHS34 contains the critical lysine residue, and the recombinant DHS34 effectively catalyzed deoxyhypusine synthesis. Furthermore, in vivo labeling confirmed that hypusination of eukaryotic initiation factor 5A occurs in intact Leishmania parasites. Interestingly, the DHS34 is much longer, with 601 amino acids, compared with the human DHS enzyme (369 amino acids) and contains several unique insertions. To study the physiological role of DHS34 in Leishmania, gene deletion mutations were attempted via targeted gene replacement. However, chromosomal null mutants of DHS34 could only be obtained in the presence of a DHS34-containing episome. The present data provide evidence that DHS34 is essential for L. donovani and that structural differences in the human and leishmanial DHS enzyme may be exploited for designing selective inhibitors against the parasite.
Resumo:
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the "homing" process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.
Resumo:
Single-stranded DNA-binding proteins (SSB) play an important role in most aspects of DNA metabolism including DNA replication, repair, and recombination. We report here the identification and characterization of SSB proteins of Mycobacterium smegmatis and Mycobacterium tuberculosis. Sequence comparison of M. smegmatis SSB revealed that it is homologous to M. tuberculosis SSB, except for a small spacer connecting the larger amino-terminal domain with the extreme carboxyl-terminal tail. The purified SSB proteins of mycobacteria bound single-stranded DNA with high affinity, and the association and dissociation constants were similar to that of the prototype SSB. The proteolytic signatures of free and bound forms of SSB proteins disclosed that DNA binding was associated with structural changes at the carboxyl-terminal domain. Significantly, SSB proteins from mycobacteria displayed high affinity for cognate RecA, whereas Escherichia coli SSB did not under comparable experimental conditions. Accordingly, SSB and RecA were coimmunoprecipitated from cell lysates, further supporting an interaction between these proteins in vivo. The carboxyl-terminal domain of M. smegmatis SSB, which is not essential for interaction with ssDNA, is the site of binding of its cognate RecA. These studies provide the first evidence for stable association of eubacterial SSB proteins with their cognate RecA, suggesting that these two proteins might function together during DNA repair and/or recombination.
Resumo:
DNA topoisomerases are ubiquitous nuclear enzymes that govern the topological interconversions of DNA by transiently breaking/rejoining the phosphodiester backbone of one (type I) or both (type II) strands of the double helix. Consistent with these functions, topoisomerases play key roles in many aspects of DNA metabolism. Type II DNA topoisomerase (topo II) is vital for various nuclear processes, including DNA replication, chromosome segregation, and maintenance of chromosome structure. Topo II expression is regulated at multiple stages, including transcriptional, posttranscriptional, and posttranslational levels, by a multitude of signaling factors. Topo II is also the cellular target for a variety of clinically relevant anti-tumor drugs. Despite significant progress in our understanding of the role of topo II in diverse nuclear processes, several important aspects of topo II function, expression, and regulation are poorly understood. We have focused this review specifically on eukaryotic DNA topoisomerase II, with an emphasis on functional and regulatory characteristics.
Resumo:
We have used circular dichroism and structure-directed drugs to identify the role of structural features, wide and narrow grooves in particular, required for the cooperative polymerization, recognition of homologous sequences, and the formation of joint molecules promoted by recA protein. The path of cooperative polymerization of recA protein was deduced by its ability to cause quantitative displacement of distamycin from the narrow groove of duplex DNA. By contrast, methyl green bound to the wide groove was retained by the nucleoprotein filaments comprised of recA protein-DNA. Further, the mode of binding of these ligands and recA protein to DNA was confirmed by DNaseI digestion. More importantly, the formation of joint molecules was prevented by distamycin in the narrow groove while methyl green in the wide groove had no adverse effect. Intriguingly, distamycin interfered with the production of coaggregates between nucleoprotein filaments of recA protein-M13 ssDNA and naked linear M13 duplex DNA, but not with linear phi X174 duplex DNA. Thus, these data, in conjunction with molecular modeling, suggest that the narrow grooves of duplex DNA provide the fundamental framework required for the cooperative polymerization of recA protein and alignment of homologous sequences. These findings and their significance are discussed in relation to models of homologous pairing between two intertwined DNA molecules.
Resumo:
Oxidative damage to DNA results in the occurrence of 7,8-dihydro-B-oxoguanine (8-oxoG) in the genome. In eubacteria, repair of such damage is initiated by two major base-excision repair enzymes, MutM and MutY. We generated a MutY-deficient strain of Mycobacterium smegmatis to investigate the role of this enzyme in DNA repair. The MutY deficiency in M. smegmatis did not result in either a noteworthy susceptibility to oxidative stress or an increase in the mutation rate. However, rifampicin resistant isolates of the MutY-deficient strain showed distinct mutations in the rifampicin-resistance-determining region of rpoB. Besides the expected C to A (or G to T) mutations, an increase in A to C (or T to G) mutations was also observed. Biochemical characterization of mycobacterial MutY (M. smegmatis and M. tuberculosis) revealed an expected excision of A opposite 8-oxoG in DNA. Additionally, excision of G and T opposite 8-oxoG was detected. MutY formed complexes with DNA containing 8-oxoG: A, 8-oxoG: G or 8-oxoG: T but not 8-oxoG : C pairs. Primer extension reactions in cell-free extracts of M. smegmatis suggested error-prone incorporation of nucleotides into the DNA. Based on these observations, we discuss the physiological role of MutY in specific mutation prevention in mycobacteria.
Resumo:
Lysophosphatidic acid (LPA) acts as a signaling molecule that regulates diverse cellular processes and it can rapidly be metabolized by phosphatase and acyltransferase LPA phosphatase gene has not been identified and characterized in plants so far The BLAST search revealed that the At3g03520 is similar to phospholipase family. and distantly related to bacterial phosphatases The conserved motif. (J)4XXXNXSFD, was identified in both At3g03520 like phospholipases and acid phosphatases In silico expression analysis of At3g03520 revealed a high expression during phosphate starvation and abiotic stresses. This gene was overexpressed in Escherichia coli and shown to posses LPA specific phosphatase activity These results Suggest that this gene possibly plays a role in signal transduction and storage lipid synthesis.
Resumo:
Two subunits of eukaryotic RNA polymerase II, Rpb7 and Rpb4, form a subcomplex that has counterparts in RNA polymerases I and III. Although a medium resolution structure has been solved for the 12-subunit RNA polymerase II, the relative contributions of the contact regions between the subcomplex and the core polymerase and the consequences of disrupting them have not been studied in detail. We have identified mutations in the N-terminal ribonucleoprotein-like domain of Saccharomyces cerevisiae Rpb7 that affect its role in certain stress responses, such as growth at high temperature and sporulation. These mutations increase the dependence of Rpb7 on Rpb4 for interaction with the rest of the polymerase. Complementation analysis and RNA polymerase pulldown assays reveal that the Rpb4 center dot Rbp7 subcomplex associates with the rest of the core RNA polymerase II through two crucial interaction points: one at the N-terminal ribonucleoprotein-like domain of Rpb7 and the other at the partially ordered N-terminal region of Rpb4. These findings are in agreement with the crystal structure of the 12-subunit polymerase. We show here that the weak interaction predicted for the N-terminal region of Rpb4 with Rpb2 in the crystal structure actually plays a significant role in interaction of the subcomplex with the core in vivo. Our mutant analysis also suggests that Rpb7 plays an essential role in the cell through its ability to interact with the rest of the polymerase.
Resumo:
This article intends to cover two aspects of non-segmented negative sense RNA viruses. In the initial section, the strategy employed by these viruses to replicate their genomes is discussed. This would help in understanding the later section in which the use of these viruses as vaccine vectors has been discussed. For the description of the replication strategy which encompasses virus genome transcription and genome replication carried out by the same RNA dependent RNA polymerase complex, a member of the prototype rhabdovirus family - Chandipura virus has been chosen as an example to illustrate the complex nature of the two processes and their regulation. In the discussion on these viruses serving as vectors for carrying vaccine antigen genes, emphasis has been laid on describing the progress made in using the attenuated viruses as vectors and a description of the systems in which the efficiency of immune responses has been tested.
Resumo:
Calreticulin is a lectin-like molecular chaperone of the endoplasmic reticulum in eukaryotes. Its interaction with N-glycosylated polypeptides is mediated by the glycan, Glc(1)Man(9)GlcNAc(2), present on the target glycoproteins. In this work, binding of monoglucosyl IgG (chicken) substrate to calreticulin has been studied using real time association kinetics of the interaction with the biosensor based on surface plasmon resonance (SPR). By SPR, accurate association and dissociation rate constants were determined, and these yielded a micromolar association constant. The nature of reaction was unaffected by immobilization of either of the reactants. The Scatchard analysis values for K-a agreed web crith the one obtained by the ratio k(1)/k(-1). The interaction was completely inhibited by free oligosaccharide, Glc(1)Man(9)GlcNAc(2), whereas Man(9)GlcNAc(2) did not bind to the calreticulin-substrate complex, attesting to the exquisite specificity of this interaction. The binding of calreticulin to IgG was used for the development of immunoassay and the relative affinity of the lectin-substrate association was indirectly measured. The values are in agreement with those obtained with SPR. Although the reactions are several orders of magnitude slower than the diffusion controlled processes, the data are qualitatively and quantitatively consistent with single-step bimolecular association and dissociation reaction. Analyses of the activation parameters indicate that reaction is enthalpically driven and does not involve a highly ordered transition state. Based on these data, the mechanism of its chaperone activity is briefly discussed.
Resumo:
A central question in biological chemistry is the minimal structural requirement of a protein that would determine its specificity and activity, the underlying basis being the importance of the entire structural element of a protein with regards to its activity vis a vis the overall integrity and stability of the protein. Although there are many reports on the characterization of protein folding/ unfolding intermediates, with considerable secondary structural elements but substantial loss of tertiary structure, none of them have been reported to show any activity toward their respective ligands. This may be a result of the conditions under which such intermediates have been isolated or due to the importance of specific structural elements for the activity. In this paper we report such an intermediate in the unfolding of peanut agglutinin that seems to retain, to a considerable degree, its carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and the quaternary association in legume lectins in particular, where precise subunit topology is required for their biologic activities.