574 resultados para ZnO crystal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy storage devices based on sodium have been considered as an alternative to traditional lithium based systems because of the natural abundance, cost effectiveness and low environmental impact of sodium. Their synthesis, and crystal and electronic properties have been discussed, because of the importance of electronic conductivity in supercapacitors for high rate applications. The density of states of a mixed sodium transition metal phosphate (maricite, NaMn1/3Co1/3Ni1/3PO4) has been determined with the ab initio generalized gradient approximation (GGA)+Hubbard term (U) method. The computed results for the mixed maricite are compared with the band gap of the parent NaFePO4 and the electrochemical experimental results are in good agreement. A mixed sodium transition metal phosphate served as an active electrode material for a hybrid supercapacitor. The hybrid device (maricite versus carbon) in a nonaqueous electrolyte shows redox peaks in the cyclic voltammograms and asymmetric profiles in the charge-discharge curves while exhibiting a specific capacitance of 40 F g(-1) and these processes are found to be quasi-reversible. After long term cycling, the device exhibits excellent capacity retention (95%) and coulombic efficiency (92%). The presence of carbon and the nanocomposite morphology, identified through X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) studies, ensures the high rate capability while offering possibilities to develop new cathode materials for sodium hybrid devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modular chiral I3-organochalcogeno amines, ArYCH2CH(R)NH2 (4a-4g) where R = Me, Bz, Ph; and ArY = PhS, BzSe and 4-MeOC6H4Te respectively have been synthesized and characterized. Compounds 4a-4g were synthesized (Method II) from chiral aminoalkyl 13-methanesulfonate hydrochlorides, MsOCH2CH(R)NH3+ center dot Cl- (2a-2c) through nucleophilic displacement of MsO- with organochalcogenolate (ArY-). In another attempt (Method I) chiral beta-organotelluro amines (4a-4c) were prepared by deprotection of chiral N-boc I3-organotelluro amides, 4-MeOC6H4TeCH2CH(R)NH-Boc (3a-3c), which in turn, 13,-,1 were made from chiral N-boc 13-methanesulfonate amides (la-lc) and ArTeNa. 1H, and FTIR spectra of all the compounds (3a-3c and 4a-4g) were characteristic. The composition of 3a-3c was determined by elemental analysis. The a]TD values of 3b-3c and 4a-4g were determined. The single crystal structures of (S)-2b and (R)-2c were determined by X-Ray diffraction studies. Both (S)-2b and (R)2c were crystallized in orthorhombic system and the Flack parameter x was found 0.08(12) and 0.00(2) respectively. The crystal of (S)-2b contain two asymmetric units with gauche (A) and staggered (B) conformations. There are NH Cl-, NH-O and CH-O intra and intermolecular secondary interactions in (S)-2b and (R)-2c resulting in supramolecular structures. (C) 2015 Elsevier By. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO powders/thin films/coatings when excited by a suitable excitation source, usually yield green luminescence in the visible wavelength range along with characteristic ultra-violet emission. We report yellow-red emission from ZnO nanoparticles synthesized within 5 min of microwave irradiation by using zinc acetylacetonate phenanthroline as the starting precursor material. The emission is strongly dependent on the typical structure of the starting precursor for ZnO synthesis, where one phenanthroline moiety is attached with zinc acetylacetonate hydrate complex. These ZnO nanoparticles could be potentially suitable phosphor for white light generation when excited by a blue laser. In contrast, the ZnO nanoparticles obtained from zinc acetylacetonate by similar method yield weak green emission. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)-ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer-Emmett-Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG-ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 x 10(-4) M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 x 10(-3) min(-1) over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferroelectricity in ZnO is an unlikely physical phenomenon. Here, we show ferroelectricity in undoped 001] ZnO nanorods due to zinc vacancies. Generation of ferroelectricity in a ZnO nanorod effectively increases its piezoelectricity and turns the ZnO nanorod into an ultrahigh-piezoelectric material. Here using piezoelectric force microscopy (PFM), it is observed that increasing the frequency of the AC excitation electric field decreases the effective d(33). Subsequently, the existence of a reversible permanent electric dipole is also found from the P-E hysteresis loop of the ZnO nanorods. Under a high resolution transmission electron microscope (HRTEM), we observe a zinc blende stacking in the wurtzite stacking of a single nanorod along the growth axis. The zinc blende nature of this defect is also supported by the X-ray diffraction (XRD) and Raman spectra. The presence of zinc vacancies in this basal stacking fault modulates p-d hybridization of the ZnO nanorod and produces a magnetic moment through the adjacent oxygen ions. This in turn induces a reversible electric dipole in the non-centrosymmetric nanostructure and is responsible for the ultrahigh-piezoelectric response in these undoped ZnO nanorods. We reveal that this defect engineered ZnO can be considered to be in the competitive class of ultrahigh-piezoelectric nanomaterials for energy harvesting and electromechanical device fabrication.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a tripeptide Boc-Leu-Val-Ac(12)c-OMe (1) is determined, which incorporates a bulky 1-aminocyclododecane-1-carboxylic acid (Ac(12)c) side chain. The peptide adopts a semi-extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the C-,C--dialkylated residue Ac(12)c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel -sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac(12)c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti-parallel -sheet in crystals, twisted or helical -sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted -sheet assembly in crystals. Copyright (c) 2016 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Radio Frequency (RF) power on the properties of magnetron sputtered Al doped ZnO thin films and the related sensor properties are investigated. A series of 2 wt% Al doped ZnO; Zn0.98Al0.02O (AZO) thin films prepared with magnetron sputtering at different RF powers, are examined. The structural results reveal a good adhesive nature of thin films with quartz substrates as well as increasing thickness of the films with increasing RF power. Besides, the increasing RF power is found to improve the crystallinity and grain growth as confirmed by X-ray diffraction. On the other hand, the optical transmittance is significantly influenced by the RF power, where the transparency values achieved are higher than 82% for all the AZO thin films and the estimated optical band gap energy is found to decrease with RF power due to an increase in the crystallite size as well as the film thickness. In addition, the defect induced luminescence at low temperature (77 K) and room temperature (300 K) was studied through photoluminescence spectroscopy, it is found that the defect density of electronic states of the Al3+ ion increases with an increase of RF power due to the increase in the thickness of the film and the crystallite size. The gas sensing behavior of AZO films was studied for NO2 at 350 degrees C. The AZO film shows a good response towards NO2 gas and also a good relationship between the response and the NO2 concentration, which is modeled using an empirical formula. The sensing mechanism of NO2 is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of a tripeptide Boc-Leu-Val-Ac(12)c-OMe (1) is determined, which incorporates a bulky 1-aminocyclododecane-1-carboxylic acid (Ac(12)c) side chain. The peptide adopts a semi-extended backbone conformation for Leu and Val residues, while the backbone torsion angles of the C-,C--dialkylated residue Ac(12)c are in the helical region of the Ramachandran map. The molecular packing of 1 revealed a unique supramolecular twisted parallel -sheet coiling into a helical architecture in crystals, with the bulky hydrophobic Ac(12)c side chains projecting outward the helical column. This arrangement resembles the packing of peptide helices in crystal structures. Although short oligopeptides often assemble as parallel or anti-parallel -sheet in crystals, twisted or helical -sheet formation has been observed in a few examples of dipeptide crystal structures. Peptide 1 presents the first example of a tripeptide showing twisted -sheet assembly in crystals. Copyright (c) 2016 European Peptide Society and John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt-modified beta-NiAl bond coats are applied over the superalloys for oxidation protection in jet engine applications. However, as shown in this study, it also enhances the growth of the interdiffusion zone developed between the bond coat and the superalloy along with brittle precipitates. Location of the Kirkendall plane indicates that a precipitate free sublayer grows from the bond coat, whereas another sublayer grows from the superalloy containing very high volume fraction of precipitates. With increasing Pt content, thickness of both the sublayers increases because of an increase in diffusion rates of the components. Quantitative electron probe microanalysis indicates high concentration of refractory components in the precipitates. Transmission electron microscopy shows that Rene N5 superalloy produces TCP phases mu and P, whereas CMSX-4 superalloy produces mu and sigma in the interdiffusion zone. With increasing Pt content in the bond coat, the average size of the precipitates decreases when coupled with Rene N5. Precipitates become much finer when the same bond coats are coupled with CMSX-4. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.