573 resultados para structural connectivity
Resumo:
Structural characterization of electrodeposited boron was carried out by using transmission electron microscopy and Raman spectroscopy. Electron diffraction and phase contrast imaging were carried out by using transmission electron microscopy. Phase identification was done based on the analysis of electron diffraction patterns and the power spectrum calculated from the lattice images from thin regions of the sample. Raman spectroscopic examination was carried out to study the nature of bonding and the allotropic form of boron obtained after electrodeposition. The results obtained from transmission electron microscopy showed the presence of nanocrystallites embedded in an amorphous mass of boron. Raman microscopic studies showed that amorphous boron could be converted to its crystalline form at high temperatures.
Resumo:
Gd1.96-xYxEu0.04O3 (x = 0.0, 0.49, 0.98, 1.47, 1.96 mol%) nanophosphors were synthesized by propellant combustion method at low temperature (400 degrees C). The powder X-ray diffraction patterns of as formed Gd1.96Eu0.04O3 showed monoclinic phase, however with the addition of yttria it transforms from monoclinic to pure cubic phase. The porous nature increases with increase of yttria content. The particle size was estimated from Scherrer's and W-H plots which was found to be in the range 30-40 nm. These results were in well agreement with transmission electron microscopy studies. The optical band gap energies estimated were found to be in the range 5.32-5.49 eV. PL emission was recorded under 305 nm excitation show an intense emission peak at 611 nm along with other emission peaks at 582, 641 nm. These emission peaks were attributed to the transition of D-5(0) —> F-7(J) (J = 0, 1, 2, 3) of Eu3+ ions. It was observed that PL intensity increases with increase of Y content up to x = 0.98 and thereafter intensity decreases. CIE color co-ordinates indicates that at x = 1.47 an intense red bright color can be achieved, which could find a promising application in flat panel displays. The cubic and monoclinic phases show different thermoluminescence glow peak values measured under identical conditions. The response of the cubic phase to the applied dose showed good linearity, negligible fading, and simple glow curve structure than monoclinic phase indicating that suitability of this phosphor in dosimetric applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A colorimetric and ``turn-on'' fluorescent chemosensor based on 1,9-pyrazoloanthrone specifically for cyanide and fluoride ion detection shows a remarkable solid state reaction when crystals of tetrabutylammonium cyanide and fluoride are brought in physical contact with 1,9-pyrazoloanthrone. X-ray crystal structures of 1,9-pyrazoloanthrone and complexes have been determined, and the ion sensing activity (detection limit of 0.2 and 2 ppb) has been inferred based on spectroscopic and structural features.
Resumo:
The present paper discusses the effect of multiwall carbon nanotubes (MWNTs) on the structural relaxation and the intermolecular cooperativity in dynamically asymmetric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)). The temperature regime where chain connectivity effects dominate the thermodynamic concentration fluctuation (T/T-g > 0.75, T-g is the glass transition temperature of the blends) was studied using dielectric spectroscopy (DS). Interestingly, in the blends with MWNTs a bimodal distribution of relaxation was obtained in the loss modulus spectra. This plausibly is due to different environments experienced by the faster component (PVME) in the presence of MWNTs. The segmental dynamics of PVME was observed to be significantly slowed down in the presence of MWNTs and an Arrhenius-type behavior, weakly dependent on temperature, is observed at higher frequencies. This non-equilibrium dynamics of PVME is presumed to be originating from interphase regions near the surface of MWNTs. The length scale of the cooperative rearranging region (xi CRR) at T-g, assessed by calorimetric measurements, was observed to be higher in the case of blends with MWNTs. An enhanced molecular level miscibility driven by MWNTs in the blends corroborates with the larger xi CRR and comparatively more number of segments in CRR (in contrast to neat blends) around T-g. The configurational entropy and length scale of the cooperative volume was mapped as a function of temperature in the temperature regime, Tg < T < T-g + 60 K. The blends phase separated by spinodal decomposition which further led to an interconnected PVME network in PS. This further led to materials with very high electrical conductivity upon demixing.
Resumo:
A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.
Resumo:
The structural and magnetic study of the pseudo-binary multiferroic (1 x)BiFeO3 (x)SrTiO3 has been investigated as a function of composition and temperature. In contrary to the previous studies, detailed examination revealed that the reported anomaly in the magnetization at x-0.30 does not occur at the composition induced rhombohedral-cubic phase boundary, but within the rhombohedral phase itself. The rhombohedral to cubic transition occurs at x > 0.4. Evidence of magneto-elastic coupling near the Neel temperature and nucleation-growth mode of the rhombohedral-cubic transformation, with both the phases coexisting over a range of temperature was found. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A series of ferrite samples with the compositional formula, Ni0.5Co0.5-xZnxFe2O4 (0 <= x <= 0.5), was prepared using the citrate based sol gel method for the better understanding of zinc doping on the structural and magnetic properties. The Rietveld-refined X-ray diffraction data revealed that the samples are having cubic structure with the Fd-3m space group. The lattice parameter increased linearly with increasing Zn content. The surface morphology and stoichiometric ratio of the compositional elements were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS). EDS showed that the elemental ratios were stoichiometric. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Zn concentration up to x=0.3 and a decrease thereafter. These results could be explained using Neel's collinear two-sub-lattice model and three-sub-lattice non-collinear model suggested by Yafet and Kittel. The magnetic cubic anisotropy constant determined by the law of approach to saturation decreased with increasing Zn content. The underlying mechanism behind observed behavior was discussed qualitatively. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 906, 1356, and 1806, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.
Resumo:
Eight alkali metal ion-mediated dioxidovanadium(V), {(VO2L1-6)-O-V} A(H2O)n]proportional to, complexes for A = Li+, Na+, K+ and Cs+, containing tridentate aroylhydrazonate ligands coordinating via ONO donor atoms, are described. All the synthesised ligands and the metal complexes were successfully characterised by elemental analysis, IR, UV-Vis and NMR spectroscopy. X-ray crystallographic investigation of 3, 5-7 shows the presence of distorted NO4 coordination geometries for LVO2- in each case, and varying mu-oxido and/ or mu-aqua bridging with interesting variations correlated with the size of the alkali metal ions: with small Li+, no bridging-O is found but four ion aggregates are found with Na+, chains for K+ and finally, layers for Cs+. Two (5) or three-dimensional (3, 6 and 7) architectures are consolidated by hydrogen bonding. The dioxidovanadium(V) complexes were found to exhibit DNA binding activity due to their interaction with CT-DNA by the groove binding mode, with binding constants ranging from 10(3) to 10(4) M-1. Complexes 1-8 were also tested for DNA nuclease activity against pUC19 plasmid DNA which showed that 6 and 7 had the best DNA binding and photonuclease activity; these results support their good protein binding and cleavage activity with binding constants ranging from 104 to 105 M-1. Finally, the in vitro antiproliferative activity of all complexes was assayed against the HeLa cell line. Some of the complexes (2, 5, 6 and 7) show considerable activity compared to commonly used chemotherapeutic drugs. The variation in cytotoxicity of the complexes is influenced by the various functional groups attached to the aroylhydrazone derivative.
Resumo:
G.N. Ramachandran is among the founding fathers of structural molecular biology. He made pioneering contributions in computational biology, modelling and what we now call bioinformatics. The triple helical coiled coil structure of collagen proposed by him forms the basis of much of collagen research at the molecular level. The Ramachandran map remains the simplest descriptor and tool for validation of protein structures. He has left his imprint on almost all aspects of biomolecular conformation. His contributions in the area of theoretical crystallography have been outstanding. His legacy has provided inspiration for the further development of structural biology in India. After a pause, computational biology and bioinformatics are in a resurgent phase. One of the two schools established by Ramachandran pioneered the development of macromolecular crystallography, which has now grown into an important component of modern biological research in India. Macromolecular NMR studies in the country are presently gathering momentum. Structural biology in India is now poised to again approach heights of the kind that Ramachandran conquered more than a generation ago.
Resumo:
Titanium dioxide (TiO2) thin films were deposited onto p-Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80-200W. The as-deposited TiO2 films were annealed at a temperature of 1023K. The post-annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p-Si structure were determined from the capacitance-voltage and current-voltage characteristics. X-ray diffraction studies confirmed that the as-deposited films were amorphous in nature. After post-annealing at 1023K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers >160W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air-annealed Al/TiO2/p-Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p-Si (metal-insulator-semiconductor) was systematically investigated. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
D Regulatory information for transcription initiation is present in a stretch of genomic DNA, called the promoter region that is located upstream of the transcription start site (TSS) of the gene. The promoter region interacts with different transcription factors and RNA polymerase to initiate transcription and contains short stretches of transcription factor binding sites (TFBSs), as well as structurally unique elements. Recent experimental and computational analyses of promoter sequences show that they often have non-B-DNA structural motifs, as well as some conserved structural properties, such as stability, bendability, nucleosome positioning preference and curvature, across a class of organisms. Here, we briefly describe these structural features, the differences observed in various organisms and their possible role in regulation of gene expression.
Resumo:
EXAFS studies at the As K edge as a function of temperature were carried out in SmFeAsO1-xFx (x = 0 and 0.2) compounds to understand the role of local structural distortions in superconductivity observed in F-doped compounds. A significant correlation between the thermal variation of local structural parameters such as anion height and superconducting onset is found in the fluorinated compounds. Such a variation in anion height is absent in the non-superconducting compound. An increase in the Fe-As bond distance just below the superconducting onset temperature indicates a similarity between the distortions observed in the high-T-C cuprates and these Fe-based superconductors.
Resumo:
The formulation of higher order structural models and their discretization using the finite element method is difficult owing to their complexity, especially in the presence of non-linearities. In this work a new algorithm for automating the formulation and assembly of hyperelastic higher-order structural finite elements is developed. A hierarchic series of kinematic models is proposed for modeling structures with special geometries and the algorithm is formulated to automate the study of this class of higher order structural models. The algorithm developed in this work sidesteps the need for an explicit derivation of the governing equations for the individual kinematic modes. Using a novel procedure involving a nodal degree-of-freedom based automatic assembly algorithm, automatic differentiation and higher dimensional quadrature, the relevant finite element matrices are directly computed from the variational statement of elasticity and the higher order kinematic model. Another significant feature of the proposed algorithm is that natural boundary conditions are implicitly handled for arbitrary higher order kinematic models. The validity algorithm is illustrated with examples involving linear elasticity and hyperelasticity. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Dysprosium oxide (Dy2O3) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using gamma-rays. A well resolved glow peak at 353 degrees C along with less intense peak at 183 degrees C was observed in GC route while, in CP a single glow peak at 364 degrees C was observed. The kinetic parameters were estimated using Chen's glow peak route. Photoluminescence (PL) of Dy2O3 shows peaks at 481, 577,666 and 756 nm which were attributed to Dy3+ transitions of F-4(9/2)-H-6(15/2), H-6(11/2), H-6(11/2) and H-6(9/2), respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED'S. (C) 2014 Elsevier Ltd. All rights reserved.