513 resultados para Thermal Loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural-acoustic waveguides of two different geometries are considered: a 2-D rectangular and a circular cylindrical geometry. The objective is to obtain asymptotic expansions of the fluid-structure coupled wavenumbers. The required asymptotic parameters are derived in a systematic way, in contrast to the usual intuitive methods used in such problems. The systematic way involves analyzing the phase change of a wave incident on a single boundary of the waveguide. Then, the coupled wavenumber expansions are derived using these asymptotic parameters. The phase change is also used to qualitatively demarcate the dispersion diagram as dominantly structure-originated, fluid originated or fully coupled. In contrast to intuitively obtained asymptotic parameters, this approach does not involve any restriction on the material and geometry of the structure. The derived closed-form solutions are compared with the numerical solutions and a good match is obtained. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional (2D) materials demonstrate several novel electrical, mechanical, and thermal properties which are quite distinctive to those of their bulk form. Among many others, one important potential application of the 2D material is its use in the field of energy harvesting. Owing to that, here we present a detailed study on electrical as well as thermal transport of monolayer MoS2, in quasi ballistic regime. Besides the perfect monolayer in its pristine form, we also consider various line defects which have been experimentally observed in mechanically exfoliated MoS2 samples. For calculating various parameters related to the electrical transmission, we employ the non-equilibrium Green's function-density functional theory combination. However, to obtain the phonon transmission, we take help of the parametrized Stillinger-Weber potential which can accurately delineate the inter-atomic interactions for the monolayer MoS2. Due to the presence of line defects, we observed significant reductions in both the charge carrier and the phonon transmissions through a monolayer MoS2 flake. Moreover, we also report a comparative analysis showing the temperature dependency of the thermoelectric figure of merit values, as obtained for the perfect as well as the other defective 2D samples. (C) 2016 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%.