586 resultados para METAL NANOWIRES
Resumo:
Group VB and VIB M-Si systems are considered to show an interesting pattern in the diffusion of components with the change in atomic number in a particular group (M = V, Nb, Ta or M = Mo, W, respectively). Mainly two phases, MSi2 and M5Si3 are considered for this discussion. Except for Ta-silicides, the activation energy for the integrated diffusion of MSi2 is always lower than M5Si3. In both phases, the relative mobilities measured by the ratio of the tracer diffusion coefficients, , decrease with an increasing atomic number in the given group. If determined at the same homologous temperature, the interdiffusion coefficients increase with the atomic number of the refractory metal in the MSi2 phases and decrease in the M5Si3 ones. This behaviour features the basic changes in the defect concentrations on different sublattices with a change in the atomic number of the refractory components.
Resumo:
It is a formidable challenge to arrange tin nanoparticles in a porous matrix for the achievement of high specific capacity and current rate capability anode for lithium-ion batteries. This article discusses a simple and novel synthesis of arranging tin nanoparticles with carbon in a porous configuration for application as anode in lithium-ion batteries. Direct carbonization of synthesized three-dimensional Sn-based MOF: K2Sn2(1,4-bdc)(3)](H2O) (1) (bdc = benzenedicarboxylate) resulted in stabilization of tin nanoparticles in a porous carbon matrix (abbreviated as Sn@C). Sn@C exhibited remarkably high electrochemical lithium stability (tested over 100 charge and discharge cycles) and high specific capacities over a wide range of operating currents (0.2-5 Ag-1). The novel synthesis strategy to obtain Sn@C from a single precursor as discussed herein provides an optimal combination of particle size and dispersion for buffering severe volume changes due to Li-Sn alloying reaction and provides fast pathways for lithium and electron transport.
Resumo:
Using first principles calculations, we show that the storage capacity as well as desorption temperature of MOFs can be significantly enhanced by decorating pyridine (a common linker in MOFs) by metal atoms. The storage capacity of metal-pyridine complexes are found to be dependent on the type of decorating metal atom. Among the 3d transition metal atoms, Sc turns out to be the most efficient storing unto four H-2 molecules. Most importantly, Sc does not suffer dimerisation on the surface of pyridine, keeping the storage capacity of every metal atom intact. Based on these findings, we propose a metal-decorated pyridine-based MOFs, which has potential to meet the required H-2 storage capacity for vehicular usage. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.
Resumo:
Application of high electric-field between two points in a thin metallic film results in liquefaction and subsequent flow of the liquid-film from one electrode to another in a radially symmetric fashion. Here, we report the transition of the flow kinetics driven by the liquid film thickness varying from 3 to 100 nm. The mechanism of the flow behavior is observed to be independent of the film thickness; however, the kinetics of the flow depends on the film thickness and the applied voltage. An analytical model, incorporating viscosity and varying electrical resistivity with film thickness, is developed to explain the experimental observations. (C) 2014 AIP Publishing LLC.
Pressure-Induced Bond Rearrangement and Reversible Phase Transformation in a Metal-Organic Framework
Resumo:
Pressure-induced phase transformations (PIPTs) occur in a wide range of materials. In general, the bonding characteristics, before and after the PIPT, remain invariant in most materials, and the bond rearrangement is usually irreversible due to the strain induced under pressure. A reversible PIPT associated with a substantial bond rearrangement has been found in a metal-organic framework material, namely tmenH(2)]Er(HCOO)(4)](2) (tmenH(2)(2+) = N,N,N',N'-tetramethylethylenediammonium). The transition is first-order and is accompanied by a unit cell volume change of about 10%. High-pressure single-crystal X-ray diffraction studies reveal the complex bond rearrangement through the transition. The reversible nature of the transition is confirmed by means of independent nanoindentation measurements on single crystals.
Resumo:
Eight alkali metal ion-mediated dioxidovanadium(V), {(VO2L1-6)-O-V} A(H2O)n]proportional to, complexes for A = Li+, Na+, K+ and Cs+, containing tridentate aroylhydrazonate ligands coordinating via ONO donor atoms, are described. All the synthesised ligands and the metal complexes were successfully characterised by elemental analysis, IR, UV-Vis and NMR spectroscopy. X-ray crystallographic investigation of 3, 5-7 shows the presence of distorted NO4 coordination geometries for LVO2- in each case, and varying mu-oxido and/ or mu-aqua bridging with interesting variations correlated with the size of the alkali metal ions: with small Li+, no bridging-O is found but four ion aggregates are found with Na+, chains for K+ and finally, layers for Cs+. Two (5) or three-dimensional (3, 6 and 7) architectures are consolidated by hydrogen bonding. The dioxidovanadium(V) complexes were found to exhibit DNA binding activity due to their interaction with CT-DNA by the groove binding mode, with binding constants ranging from 10(3) to 10(4) M-1. Complexes 1-8 were also tested for DNA nuclease activity against pUC19 plasmid DNA which showed that 6 and 7 had the best DNA binding and photonuclease activity; these results support their good protein binding and cleavage activity with binding constants ranging from 104 to 105 M-1. Finally, the in vitro antiproliferative activity of all complexes was assayed against the HeLa cell line. Some of the complexes (2, 5, 6 and 7) show considerable activity compared to commonly used chemotherapeutic drugs. The variation in cytotoxicity of the complexes is influenced by the various functional groups attached to the aroylhydrazone derivative.
Resumo:
Nanosized cerium and nitrogen co-doped TiO2 (Ce-TiO2-xNx) was synthesized by sol gel method and characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), FESEM, Fourier transform infrared, N-2 adsorption and desorption methods, photoluminescence and ultraviolet-visible (UV-vis) DRS techniques. PXRD analysis shows the dopant decreases the crystallite sizes and slows the crystallization of the titania matrix. XPS confirm the existence of cerium ion in +3 or +4 state, and nitrogen in -3 state in Ce-TiO2-xNx. The modified surface of TiO2 provides highly active sites for the dyes at the periphery of the Ce-O-Ti interface and also inhibits Ce particles from sintering. UV-visible DRS studies show that the metal-metal charge transfer (MMCT) of Ti/Ce assembly (Ti4+/Ce3+ -> Ti3+/Ce4+) is responsible for the visible light photocatalytic activity. Photoluminescence was used to determine the effect of cerium ion on the electron-hole pair separation between the two interfaces Ce-TiO2-xNx and Ce2O3. This separation increases with the increase of cerium and nitrogen ion concentrations of doped samples. The degradation kinetics of methylene blue and methyl violet dyes in the presence of sol gel TiO2, Ce-TiO2-xNx and commercial Degussa P25 was determined. The higher visible light activity of Ce-TiO2-xNx was due to the participation of MMCT and interfacial charge transfer mechanism.
Resumo:
Present work provides an electrodeposition based methodology for synthesizing Ag-Ni-Fe nanowires. Nanowire morphology was achieved by using an anodic alumina membrane having cylindrical pores of similar to 200 nm diameter. Compositional analysis at a single nanowire level revealed a fairly uniform distribution of component elements in the nanowire volume. Structural characterization strongly indicated toward a presence of randomly oriented, non-equilibrium, nano-crystalline phase volume inside the nanowires. Magnetic characterization revealed a soft magnetic character for the as-synthesized Ag-Ni-Fe nanowires. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Digestive ripening, a postsynthetic treatment of colloidal nanoparticles, is a versatile method to produce monodisperse nanoparticles and to prepare various bimetallic nanostructures. The mechanism of this process is largely unknown. Herein, we present a systematic study conducted using Au nanoparticles prepared by a solvated metal atom dispersion method to probe the mechanistic aspects of digestive ripening. In our study, experimental conditions such as concentration of capping agent, reaction time, and temperature, were found to influence the course of the digestive ripening process. Here it is shown that, during digestive ripening under reflux, nanoparticles within an optimum size window are conserved, and surface etching facilitated mass transfer resulted in monodisperse nanoparticles. Overall, digestive ripening can be considered as a kinetically controlled thermodynamic process.
Resumo:
This work provides an electrodeposition-based methodology for synthesizing multicomponent nanowires containing Ag, Co and Ni atoms. Nanowire morphology was obtained by using an anodic alumina membrane with cylindrical pores of similar to 200-nm diameter. Structural, compositional and magnetic characterization revealed that the as-synthesized nanowires adopted a core-shell microstructure. The core (axial region) contained pure Ag phase volumes with a plate-like morphology oriented perpendicular to the nanowire axis. The shell (peripheral region) contained pure Ag nanoparticles along with superparamagnetic Co and Ni rich clusters.
Resumo:
This report provides information about an electrodeposition based two-step synthesis methodology for producing core-shell Ag-(Ni-O) nanowires and their detailed structural and compositional characterization using electron microscopy technique. Nanowires were produced by employing anodic alumina templates with a pore diameter of 200 nm. In the first step of the synthesis process, nanocrystalline Ni-O was electrodeposited in a controlled manner such that it heterogeneously nucleated and grew only on the template pore walls without filling the pores from bottom upwards. This alumina template with pore walls coated with Ni-O was then utilized as a template during the electrodeposition of Ag in the second step. Electrodeposited Ag filled the template pores to finally produce Ag-(Ni-O) core-shell nanowires with an overall diameter of 200 nm.
Resumo:
A detailed understanding of structure and stability of nanowires is critical for applications. Atomic resolution imaging of ultrathin single crystalline Au nanowires using aberration-corrected microscopy reveals an intriguing relaxation whereby the atoms in the close-packed atomic planes normal to the growth direction are displaced in the axial direction leading to wrinkling of the (111) atomic plane normal to the wire axis. First-principles calculations of the structure of such nanowires confirm this wrinkling phenomenon, whereby the close-packed planes relax to form saddle-like surfaces. Molecular dynamics studies of wires with varying diameters and different bounding surfaces point to the key role of surface stress on the relaxation process. Using continuum mechanics arguments, we show that the wrinkling arises due to anisotropy in the surface stresses and in the elastic response, along with the divergence of surface-induced bulk stress near the edges of a faceted structure. The observations provide new understanding on the equilibrium structure of nanoscale systems and could have important implications for applications in sensing and actuation.
Resumo:
Interaction between the lattice and the orbital degrees of freedom not only makes rare-earth nickelates unusually ``bad metal,'' but also introduces a temperature-driven insulator-metal phase transition. Here we investigate this insulator-metal phase transition in thin films of SmNiO3 using the slow time-dependent fluctuations (noise) in resistivity. The normalized magnitude of noise is found to be extremely large, being nearly eight orders of magnitude higher than thin films of common disordered metallic systems, and indicates electrical conduction via classical percolation in a spatially inhomogeneous medium. The higher-order statistics of the fluctuations indicate a strong non-Gaussian component of noise close to the transition, attributing the inhomogeneity to the coexistence of the metallic and insulating phases. Our experiment offers insight into the impact of lattice-orbital coupling on the microscopic mechanism of electron transport in the rare-earth nickelates.
Resumo:
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.