523 resultados para ANTIDEPRESSANT PROPERTIES
Resumo:
The effects of 100 MeV Oxygen and 200 MeV Silver ions on the structural and transport properties of YBCO thin films are reported. Both normal state and superconducting properties were studied on Laser ablated and high pressure oxygen sputtered films. Precise electrical resistance and critical current measurements near T-c were made and the data obtained were analysed in the light of existing models of para-coherence near T-c and the other aspects of radiation damage arising from microstructural studies such as atomic force microscopy (AFM). There was evidence of sputtering by high energy ions from AFM measurement. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A detailed study of the layered manganite La1+xSr2-xMn2O7 has been performed, establishing that within the composition range 0.1 less than or equal to x less than or equal to 0.45 the phases crystallize in the I4/mmm space group. The evolution of structural parameters with x: in this composition range has been followed using a novel application of an existing program for the Rietveld analysis of powder diffraction data. The structure, a familiar intergrowth of rock-salt (La,Sr)O slabs and double perovskite (La,Sr)(2)Mn2O6 units, is characterized by a reluctance to deform the latter. This manifests as a ''pumping'' of the larger Sr-II ion into the 12-coordinate site of the structure as x is increased. We report these features of the structure as well as electrical transport and magnetic properties, in light of recent observations of giant, negative magnetoresistance in these systems.
Resumo:
Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.
Resumo:
Nanometric granular materials represent a new class of materials with significant promise. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. These materials show many interesting properties which include structural, magnetic and transport properties, The phase transformation of the embedded particles shows distinctive behavior and yields new insight. We shall first highlight the strategy of synthesis of these materials through rapid solidification. This will be followed by three examples where the nanoscale dimension of the embedded particles play a unique role. These are melting and solidification of the nanodispersed embedded particles and the superconducting transition. (C) 1997 Elsevier Science S.A.
Resumo:
Eight new bis-cationic dimeric lipids 2a-h have been synthesized; TEM of their aqueous dispersions confirmed the vesicle formation and from the thermal, spectroscopic, DLS and XRD studies it has been revealed that they form three different kinds of membranous aggregate depending on the m-value.
Resumo:
Pyrochlore magnets are candidates for what Harris et al. [Phys. Rev. Lett. 79, 2554 (1997)] call "spin-ice" behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R = rare earth) supported by magnetothermal measurements on selected systems. Ey considering long-ranged dipole-dipole as well as short-ranged superexchange interactions, we get three distinct behaviors: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, and (iii) a partially ordered state with a sharp transition to paramagnetism. Closely corresponding behavior is seen in the real compounds.
Resumo:
Disordered nanocrystalline Ni3Fe alloy was prepared by mechanical alloying of elemental powders. X-ray diffractograms show the formation of Ni3Fe single phase. The chemical composition and morphology of the powder have been obtained by using EDAX and SEM analysis respectively. While the saturation magnetisation decreases with milling time, the coercivity increases. The width of the hyperfine field distributions obtained from Mossbauer studies shows that the alloy is highly disordered Atomic ordering is found to take place at a faster rate compared to that in the bulk alloy. (C) 1999 Acta Metallurgica Inc.
Resumo:
The experimental realization of various spin ladder systems has prompted their detailed theoretical investigations. Hen we study the evolution of ground-state magnetization with an external magnetic field for two different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an additional diagonal interaction. The finite system density-matrix renormalization-group method is employed for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magnetization plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero magnetization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magnetization for a certain range of values of the couplings. We study the regions of transitions between plateaus numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by an XXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to the XXZ model, We also study numerically some low-temperature properties of the three-chain system, such as the magnetization, magnetic susceptibility and specific heat. [S0163-1829(99)303001-5].
Resumo:
Asymmetrically dibridged dicopper(II) complexes, [Cu-2(OH)(O2CC6H4-p-Me)(tmen)(2)(H2O)](ClO4)(2) (1) and [Cu-2(OH)(O2CC6H4-p-OMe)(tmen)(2)(H2O)](ClO4)(2) (2) (tmen = N,N,N',N'-tetramethylethane-1,2-diamine), were prepared and structurally characterized. Complex 1 crystallizes in the monoclinic space group P2(1)/a with a = 17.718(2), b = 9.869(1), c = 19.677(2) Angstrom, beta = 115.16(1)degrees, V = 3114.3(6) Angstrom(3) and Z = 4. The structure was refined to R(wR(2)) = 0.067(0.178). Complex 2 crystallizes in the monoclinic space group P2(1)/a with a = 17.695(3), b = 9.574(4), c = 20.104(2) Angstrom, beta = 114.18(1)degrees, V = 3107(1) Angstrom(3) and Z = 4. The final residuals are R(wR(2)) = 0.067(0.182). The complexes have a [Cu-2(mu-OH)(mu-OH)(mu-O2CAr)](2+) core with tmen Ligands occupying the terminal sites of the core. In addition, one copper is axially bound to a water molecule. The Cu ... Cu distances and the Cu-OH Cu angles in the core are 3.394(1) Angstrom, 124.4(2)degrees for 1 and 3.374(1) Angstrom, 123.3(3)degrees for 2. The complexes show axial X-band EPR spectral features in methanol glass at 77 K giving g(perpendicular to) = 2.02, g(parallel to) = 2.3 (A(parallel to) = 165 x 10(-4) cm(-1)) and a visible band near similar to 630 nm in methanol. The complexes are weakly antiferromagnetic. A theoretical fit of the magnetic susceptibility data in the temperature range 40-295 K gives -J = 10 cm(-1), g = 2.05 for 1 and -J = 10 cm(-1), g = 2.0 for 2. Plots of -2J versus the Cu-OH-Cu angle (phi) in this class of asymmetrically dibridged dicopper(II) complexes having d(x2-y2)-d(x2-y2) magnetic orbitals show a linear magneto-structural correlation: -2J(cm(-1)) = 11.48 phi(deg) - 1373.
Resumo:
We study linear and nonlinear optical properties of two push-pull polyenes stacked in head to head (HtH) and head to tail (HtT) configurations, at different stacking angles within the Pariser-Parr-Pople model using exact diagonalization method. By varying the stacking angle between the polyenes, we find that the optical gap varies marginally, but transition dipoles show large variations. We find that the dominant first-order hyperpolarizability component beta(XXX) for HtH arrangement and beta(YYY) for HtT arrangement strongly depend on the distance of separation between molecules, while the other smaller component beta(XYY) for HtH arrangement and beta(XXY) for HtT arrangement) does not show this variation with distance. We find that the beta(XXX) for HtH configuration shows a maximum at an angle away from 0, in contrast with the oriented gas model. This angle varies with distance between the polyenes, and at large distance it falls to 0. The ratio of all components of beta of a dimer to monomer is less than two for HtH configuration for all angles. But for HtT configurations the ratio of the dominant beta component is greater than two at large angles. Our ZINDO study on two monomers (4-hydroxy-4'-nitroazobenzene) connected in a nonconjugative fashion shows a linear increase in vertical bar(beta) over right arrow (av)vertical bar without much red shift in optical gap. There is a linear increase in vertical bar(beta) over right arrow (av)vertical bar with increase in number of monomers connected nonconjugatively without resulting in a red shift in optical gap.
Resumo:
There have been reported attempts of producing Cu based MMCs employing solid phase routes. In this work, copper was reinforced with short carbon fibres by pressure infiltration (squeeze casting) of molten metal through dry-separated carbon fibres. The resulting MMC's microstructure revealed uniform distribution of fibres with minimum amount of clustering. Hardness values are considerably higher than that for the unreinforced matrix. Addition of carbon fibres has brought in strain in the crystal lattice of the matrix, resulting in higher microhardness of MMCs and improved wear resistance. Tensile strength values of MMCs at elevated temperatures are considerably higher than that of the unreinforced matrix processed under identical conditions. (C) 1999 Kluwer Academic Publishers.
Resumo:
Synthesis and characterization of electrical and magnetic properties of ilmenite phases of the type MnTi1-xNbxO3 have been carried out. Single phase materials could be obtained for 0.0 less than or equal to x less than or equal to 0.25. The electrical conductivity increases with increasing Nb content. Magnetic susceptibility studies show that the phases exhibit 2D antiferromagnetic behavior. The magnetic susceptibility data has been analyzed using Fisher's specific heat to determine the long range ordering temperature, (C) 1998 Academic Press.
Resumo:
Sandwich structures, especially those with honeycomb and grid structures as the core material, are very commonly employed in aircraft structures. There is an increasing use of closed-pore rigid syntactic foams as core materials in sandwich constructions because they possess a number of favourable properties. The syntactic foams, owing to their structure and formation, behave differently under compression compared to other traditionally used core materials. In the present study, therefore, syntactic foam core sandwich constructions are evaluated for their behaviour under compression in both edgewise and flatwise orientations. Further, the work characterises the relative performance of two sets of sandwich materials, one containing glass-epoxy and the other, glass/carbon hybrid-epoxy skins. As non-standard geometry test specimens were involved, only a comparative evaluation was contemplated in this approach. The experiments indicate that the nature of the reinforcement fabric in the skin has a bearing on the test results in edgewise orientation. Thus, the tendency towards initiation of vertical crack in the central plane of the core material, which is a typical fracture event in this kind of material, was found to occur after a delay for the specimens containing the glass fabric in the skin. Attempts are made to establish the correlation between observations made on the test specimen visually during the course of testing and the post-compression microscopic examinations of the fracture features.