531 resultados para magnetic moments
Resumo:
The present study examines the efficacy of a high strength pulsed magnetic field (PMF) towards bacterial inactivation in vitro, without compromising eukaryotic cell viability. The differential response of prokaryotes Staphylococcus aureus (MESA), Staphylococcus epidermidis, and Escherichia coli], and eukaryotes C2C12 mouse myoblasts and human mesenchymal stem cells, hMSCs] upon exposure to varying PMF stimuli (1-4 T, 30 pulses, 40 ms pulse duration) is investigated. Among the prokaryotes, similar to 60% and similar to 70% reduction was recorded in the survival of staphylococcal species and E. coli, respectively at 4 T PMF as evaluated by colony forming unit (CPU) analysis and flow cytometry. A 2-5 fold increase in intracellular ROS (reactive oxygen species) levels suggests oxidative stress as the key mediator in PMF induced bacterial death/injury. The 4 T PMF treated staphylococci also exhibited longer doubling times. Both TEM and fluorescence microscopy revealed compromised membranes of PMF exposed bacteria. Under similar PMF exposure conditions, no immediate cytotoxicity was recorded in C2C12 mouse myoblasts and hMSCs, which can be attributed to the robust resistance towards oxidative stress. The ion interference of iron containing bacterial proteins is invoked to analytically explain the PMF induced ROS accumulation in prokaryotes. Overall, this study establishes the potential of PMF as a bactericidal method without affecting eukaryotic viability. This non-invasive stimulation protocol coupled with antimicrobial agents can be integrated as a potential methodology for the localized treatment of prosthetic infections. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.
Resumo:
Bi1-xCaxFe1-xCoxO3 nanoparticles with x=0.0, 0.05, 0.10 and 0.15 were successfully synthesized by cost effective tartaric acid based sol gel route. The alkali earth metal Ca2+ ions and transition metal Co3+ ions codoping at A and B-sites of BiFeO3 results in structural distortion and phase transformation. Rietveld refinement of XRD patterns suggested the coexistence of rhombohedral and orthorhombic phases in codoped BiFeO3 samples. Both XRD and Raman scattering studies showed the compressive lattice distortion in the samples induced by codoping of Ca2+ and Co3+ ions. Two-phonon Raman spectra exhibited the improvement of magnetization in these samples. X-ray photoelectron spectroscopy (XPS) showed the dominancy of Fe3+ and Co3+ oxidation states along with the shifting of the binding energy of Bi 4f orbital which confirms the substitution Ca2+ at Bi-site. The magnetic study showed the enhancement in room temperature ferromagnetic behavior with co-substitution consistent with Rama analysis. The gradual change in line shape of electron spin resonance spectra indicated the local distortion induced by codoping. (C) 2015 Published by Elsevier Ltd and Techna Group S.r.l.
Resumo:
We investigate the direct correspondence between Co band ferromagnetism and structural parameters in the pnictide oxides RCoPO for different rare-earth ions (R = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and ab initio calculations, complementing our results published previously G. Prando et al., Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr), Phys. Rev. B 87, 064401 (2013)]. We find that both the transition temperature to the ferromagnetic phase T-C and the volume of the crystallographic unit cell V are conveniently tuned by the R ionic radius and/or external pressure. We report a linear correlation between T-C and V and our ab initio calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, we show that R ions influence the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic f degrees of freedom, which are only giving a sizable magnetic contribution at much lower temperatures.
Resumo:
The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis form at the onset of convection. The classical picture of magnetoconvection with constant or axially varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly rotating regime. With a small-scale field, however, the magnetic control of convection is different from that in previous studies with a uniform or large-scale field. This study looks at the competing viscous and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is small. As the applied magnetic field strength (measured by the Elsasser number Lambda) increases, the critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid layer where the field is weak. The viscous-magnetic mode transition occurs at Lambda similar to 1, which implies that small-scale convection can exist at field strengths higher than previously thought. In spherical shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at Lambda similar to 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic vortices.
Resumo:
Nanocrystalline Mn0.4Zn0.6SmxGdyFe2-(x+y)O4 (x = y = 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by combustion route. The detailed structural studies were carried out through X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM). The results confirms the formation of mixed spine phase with cubic structure due to the distortion created with co-dopants substitution at Fe site in Mn-Zn ferrite lattice. Further, the crystallite size increases with an increase of Sm3+-Gd3+ ions concentration while lattice parameter and lattice strain decreases. Furthermore, the effect of Sm-Gd co-doping in Mn-Zn ferrite on the room temperature electrical (dielectric studies) studies were carried out in the wide frequency range 1 GHz-5 GHz. The magnetic studies were carried out using vibrating sample magnetometer (VSM) under applied magnetic field of 1.5T and also room temperature electron paramagnetic resonance (EPR) spectra's were recorded. From the results of dielectric studies, it shows that the real and imaginary part of permittivities are increasing with variation of Gd3+ and Sm3+ concentration. The magnetic studies reveal the decrease of remnant, saturation magnetization and coercivity with increasing of Sm3+-Gd3+ ion concentration. The g-value, peak-to-peak line width and spin concentration evaluated from EPR spectra correlated with cations occupancy. The electromagnetic properties clearly indicate that these materials are the good candidates which are useful at L and C band frequency. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In recent years, magnetic core-shell nanoparticles have received widespread attention due to their unique properties that can be used for various applications. We introduce here a magnetic core-shell nanoparticle system for potential application as a contrast agent in magnetic resonance imaging (MRI). MnFe2O4-Fe3O4 core-shell nanoparticles were synthesized by the wet-chemical synthesis method. Detailed structural and compositional charaterization confirmed the formation of a core-shell microstructure for the nanoparticles. Magnetic charaterization revealed the superparamagnetic nature of the as-synthesized core-shell nanoparticles. Average size and saturation magnetization values obtained for the as-synthesized core-shell nanoparticle were 12.5 nm and 69.34 emu g(-1) respectively. The transverse relaxivity value of the water protons obtained in the presence of the core-shell nanoparticles was 184.1 mM(-1) s(-1). To investigate the effect of the core-shell geometry towards enhancing the relaxivity value, transverse relaxivity values were also obtained in the presence of separately synthesized single phase Fe3O4 and MnFe2O4 nanoparticles. Average size and saturation magnetization values for the as-synthesized Fe3O4 nanoparticles were 12 nm and 65.8 emu g(-1) respectively. Average size and saturation magnetization values for the MnFe2O4 nanoparticles were 9 nm and 61.5 emu g(-1) respectively. The transverse relaxivity value obtained in the presence of single phase Fe3O4 and MnFe2O4 nanoparticles was 96.6 and 83.2 mM(-1) s(-1) respectively. All the nanoparticles (core-shell and single phase) were coated with chitosan by a surfactant exchange reaction before determining the relaxivity values. For similar nanoparticle sizes and saturation magnetization values, the highest value of the transverse relaxivity in the case of core-shell nanoparticles clearly illustrated that the difference in the magnetic nature of the core and shell phases in the core-shell nanoparticles creates greater magnetic inhomogeneity in the surrounding medium yielding a high value for proton relaxivity. The MnFe2O4-Fe3O4 core-shell nanoparticles exhibited extremely low toxicity towards the MCF-7 cell line. Taken together, this opens up new avenues for the use of core-shell nanoparticles in MRI.
Resumo:
Noise-predictive maximum likelihood (NPML) is a well known signal detection technique used in partial response maximum likelihood (PRML) scheme in 1D magnetic recording channels. The noise samples colored by the partial response (PR) equalizer are predicted/ whitened during the signal detection using a Viterbi detector. In this paper, we propose an extension of the NPML technique for signal detection in 2D ISI channels. The impact of noise prediction during signal detection is studied in PRML scheme for a particular choice of 2D ISI channel and PR targets.
Resumo:
Nanocrystalline Mn1-xZnxFe2O4 (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0) were prepared via solution combustion method. Structural and morphology of Mn-Zn ferrites were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetic properties were carried out using vibrating sample magnetometer (VSM) at room temperature (RT) up to maximum field of 1.5 T. The room temperature real and imaginary part of permeability(mu' and mu'') has been measured in the frequency range of 1MHz to 1GHz. The room temperature XRD patterns exhibits the spinel cubic (Fm-3m) structure and broad XRD patterns shows the presence of nanoparticles. The imaginary part of the permeability (mu'') gradually increased with the frequency and took a broad maximum at a certain frequency, where the real permeability (mu') rapidly decreases, which is known as natural resonance. The coercive filed values are low, hence probability of domain rotation is also lower and the magnetization decreased with zinc substitution. The values of mu' and mu'' increases sharply, attained a maximum and then decreases with zinc content.
Resumo:
Tb1-xSrxMnO3 (x = 0.1, 0.2, 0.3, 0.4 and 0.5) polycrystalline samples are prepared via conventional solid state synthesis route. All samples crystallize in orthorhombic Pnma space group and possess O'-type distortion. Orthorhombic and octahedral distortion is found to decrease with increase in Sr content. At intermediate distortion, (20% and 30% doping level) Curie-Weiss analysis of inverse dc magnetic susceptibility data yields +ve Curies-Weiss constant, characteristic of FM interaction. Isothermal magnetization measurements give the highest magnitude of magnetic moment at these compositions.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.
Resumo:
Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015