573 resultados para Solid electrolyte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous activated-carbons with a large surface-area have been the most common materials for electrical-double-layer capacitors (EDLCs). These carbons having a wide pore distribution ranges from micropores to macropores in conjunction with a random pore connection that facilitates the high specific-capacitance values. Pore distribution plays a central role in controlling the capacitance value of EDLCs, since electrolyte distribution inside the active material mainly depends on the pore distribution. This has a direct influence on the distribution of resistance and capacitance values within the electrode. As a result, preparation of electrodes remains a vital issue in realising high-performance EDLCs. Generally, carbon materials along with some binders are dispersed into a solvent and coated onto the current collectors. This study examines the role of binder solvents used for the carbon-ink preparation on the microstructure of the electrodes and the consequent performance of the EDLCs. It is observed that the physical properties of the binder solvent namely its dielectric constant, viscosity and boiling point have important role in determining the pore-size distribution as well as the microstructure of electrodes which influence their specific capacitance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The validity of the newly proposed `carbon bonding', an interaction where a carbon atom acts as an electrophilic site towards a variety of nucleophiles, has been investigated in the solid state. X-ray charge density analysis provides experimental evidence for this hitherto unexplored interaction and unravels its nature and strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase equilibrium experiments indicate that NdRhO3 is the only ternary oxide in the system Nd-Rh-O at 1273 K; it has orthorhombically-distorted perovskite structure. By employing a solid-state electrochemical cell incorporating calcia-stabilized zirconia as the electrolyte, thermodynamic properties of NdRhO3 are determined. The standard Gibbs energy of formation of NdRhO3 from its component binary oxides in the temperature ranges from 900 to 1300 K can be expressed as: 1/2Rh(2)O(3) (ortho)+1/2Nd(2)O(3)(hex)=NdRhO3(ortho), Delta(f(o,x))G(0)/J mol(-1)( +/- 197) = - 66256+5.64 (T/K). The decomposition temperature of NdRhO3 computed from extrapolated thermodynamic data is 1803 (+/- 4) K in pure oxygen and 1692 (+/- 4) K in air at standard pressure. Oxygen partial pressure-composition diagram and three-dimensional chemical potential diagram at 1273 K are developed from thermodynamic data obtained in this study and auxiliary information from the literature. Equilibrium temperature-composition phase diagrams at constant oxygen partial pressures are also constructed. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents the synthesis, characterization, and kinetics of steam reforming of methane and water gas shift (WGS) reactions over highly active and coke resistant Zr0.93Ru0.05O2-delta. The catalyst showed high activity at low temperatures for both the reactions. For WGS reaction, 99% conversion of CO with 100% H-2 selectivity was observed below 290 degrees C. The detailed kinetic studies including influence of gas phase product species, effect of temperature and catalyst loading on the reaction rates have been investigated. For the reforming reaction, the rate of reaction is first order in CH4 concentration and independent of CO and H2O concentration. This indicates that the adsorptive dissociation of CH4 is the rate determining step. The catalyst also showed excellent coke resistance even under a stoichiometric steam/carbon ratio. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic nature of Ru species. The associative mechanism involving the surface formate as an intermediate was used to correlate experimental data. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solid-state electrochemical technique, thermodynamic properties of three sulfide phases (RhS0.882, Rh3S4, Rh2S3) in the binary system (Rh + S) are measured as a function of temperature over the range from (925 to 1275) K. Single crystal CaF2 is used as the electrolyte. The auxiliary electrode consisting of (CaS + CaF2) is designed in such a way that the sulfur chemical potential converts into an equivalent fluorine potential at each electrode. The sulfur potentials at the measuring electrodes are established by the mixtures of (Rh + RhS0.882), (RhS0.882 + Rh3S4) and (Rh3S4 + Rh2S3) respectively. A gas mixture (H-2 + H2S + Ar) of known composition fixes the sulfur potential at the reference electrode. A novel cell design with physical separation of rhodium sulfides in the measuring electrode from CaS in the auxiliary electrode is used to prevent interaction between the two sulfide phases. They equilibrate only via the gas phase in a hermetically sealed reference enclosure. Standard Gibbs energy changes for the following reactions are calculated from the electromotive force of three cells: 2.2667Rh (s) + S-2 (g) -> 2.2667RhS(0.882) (s), Delta(r)G degrees +/- 2330/(J . mol(-1)) = -288690 + 146.18 (T/K), 4.44RhS(0.882) (s) + S-2 (g) -> 1.48Rh(3)S(4) (s), Delta(r)G degrees +/- 2245/(J . mol(-1)) = -245596 + 164.31 (T/K), 4Rh(3)S(4) (s) + S-2 (g) -> 6Rh(2)S(3) (s), Delta(r)G degrees +/- 2490/(J . mol(-1)) = -230957 + 160: 03 (T/K). Standard entropy and enthalpy of formation of rhodium sulfides from elements in their normal standard states at T = 298.15 K are evaluated. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the system La-Cr-O, there are three ternary oxides (LaCrO4, La2Cr3O12, and La2CrO6) that contain Cr in higher valence states (V or VI). On heating, LaCrO4 decomposes to LaCrO3, La2Cr3O12 to a mixture of LaCrO4 and Cr2O3, and La2CrO6 to LaCrO3 and La2O3 with loss of oxygen. The oxygen potentials corresponding to these decomposition reactions are determined as a function of temperature using solid-state cells incorporating yttria-stabilized zirconia as the electrolyte. Measurements are made from 840K to the decomposition temperature of the ternary oxides in pure oxygen. The standard Gibbs energies of formation of the three ternary oxides are derived from the reversible electromotive force (EMF) of the three cells. The standard enthalpy of formation and standard entropy of the three ternary oxides at 298.15K are estimated. Subsolidus phase relations in the system La-Cr-O are computed from thermodynamic data and displayed as isothermal sections at several temperature intervals. The decomposition temperatures in air are 880 (+/- 3)K for La2Cr3O12, 936 (+/- 3)K for LaCrO4, and 1056 (+/- 4)K for La2CrO6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective detection of nitro-aromatic compounds (NACs) at nanomolar concentration is achieved for the first time in multiple media including water, micelles or in organogels as well as using test strips. Mechanism of interaction of NACs with highly fluorescent p-phenylenevinylene-based molecules has been described as the electron transfer phenomenon from the electron-rich chromophoric probe to the electron deficient NACs. The selectivity in sensing is guided by the pK(a) of the probes as well as the NACs under consideration. TNP-induced selective gel-to-sol transition in THF medium is also observed through the reorganization of molecular self-assembly and the portable test trips are made successfully for rapid on-site detection purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rheological behavior of semi-solid slurries forms the backbone of semi-solid processing of metallic alloys. In particular, the effects of several process and metallurgical parameters such as shear rate, shear time, temperature, rest time and size, distribution and morphology of the primary phase on the viscosity of the slurry needs in-depth characterization. In the present work, rheological behaviour of the semisolid aluminium alloy (A356) slurry is investigated by using a high temperature Searle type Rheometer using concentric cylinders. Three different types of experiment are carried out: isothermal test, continuous cooling test and steady state test. Continuous decrease in viscosity is observed with increasing shear rate at a fixed temperature (isothermal test). It is also found that the viscosity increases with decreasing temperature for a particular shear rate due to increasing solid fraction (continuous cooling test). Thixotropic nature of the slurry is confirmed from the hysteresis loops obtained during experimentation. Time dependence of slurry viscosity has been evaluated from the steady state tests. After a longer shearing time under isothermal conditions the starting dendritic structure of the said alloy is transformed into globular grains due to abrasion, agglomeration, welding and ripening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using isothermal equilibration, phase relations are established in the system Sm-Rh-O at 1273 K. SmRhO3 with GdFeO3-type perovskite structure is found to be the only ternary phase. Solid-state electrochemical cells, containing calcia-stabilized zirconia as an electrolyte, are used to measure the thermodynamic properties of SmRhO3 formed from their binary component oxides Rh2O3 (ortho) and Sm2O3 (C-type and B-type) in two different temperature ranges. Results suggest that C-type Sm2O3 with cubic structure transforms to B-type Sm2O3 with monoclinic structure at 1110 K. The standard Gibbs energy of transformation is . Standard Gibbs energy of formation of SmRhO3 from binary component oxides Rh2O3 and Sm2O3 with B-type rare earth oxide structure can be expressed as . The decomposition temperature of SmRhO3 estimated from the extrapolation of electrochemical data is 1665 (+/- 2) K in air and 1773 (+/- 3) K in pure oxygen. Temperature-composition diagrams at constant oxygen pressures are constructed for the system Sm-Rh-O. Employing the thermodynamic data for SmRhO3 from emf measurement and auxiliary data for other phases from the literature, oxygen potential-composition phase diagram and 3-D chemical potential diagram for the system Sm-Rh-O at 1273 K are developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed diffusion study was carried out on Cu(Ga) and Cu(Si) solid solutions in order to assess the role of different factors in the behaviour of the diffusing components. The faster diffusing species in the two systems, interdiffusion, intrinsic and impurity diffusion coefficients, are determined to facilitate the discussion. It was found that Cu was more mobile in the Cu-Si system, whereas Ga was the faster diffusing species in the Cu-Ga system. In both systems, the interdiffusion coefficients increased with increasing amount of solute (e.g. Si or Ga) in the matrix (Cu). Impurity diffusion coefficients for Si and Ga in Cu, found out by extrapolating interdiffusion coefficient data to zero composition of the solute, were both higher than the Cu tracer diffusion coefficient. These observed trends in diffusion behaviour could be rationalized by considering: (i) formation energies and concentration of vacancies, (ii) elastic moduli (indicating bond strengths) of the elements and (iii) the interaction parameters and the related thermodynamic factors. In summary, we have shown here that all the factors introduced in this paper should be considered simultaneously to understand interdiffusion in solid solutions. Otherwise, some of the aspects may look unusual or even impossible to explain.