569 resultados para Relaxin-3
Resumo:
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.
Resumo:
The perovskite structure in Pb(Zn1/3Nb2/3)O3 can be stabilized by the addition of Pb(Ni1/3Nb2/3)O3 and PbTiO3.Pb(Ni1/3Nb2/3)O3 assists in lowering the sintering temperature and shifting the Curie temperature of ceramics while PbTiO3 helps to optimize the dielectric properties. The phase stability and dielectric properties of several compositions in the Pb(Zn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-PbTiO3 ternary relaxor ferroelectric system were investigated for possible capacitor applications. The effect of calcining and sintering temperature on the stability of perovskite phase in PZN rich compositions was studied extensively as a function of composition. The boundary line separating perovskite and mixed phases was determined for compositions near PZN. Several compositions can be sintered below 1050°C. The dielectric properties of compositions near the mixed phase boundary showed strong dependence on the percentage of pyrochlore phase. Compositions with a dielectric constant of 12.500 at room temperature have been identified which meet Z5T and Y5U specifications for dielectric constant and tan δ.
Resumo:
p-Hydroxyphenylacetate-3-hydroxylase, an inducible enzyme isolated from the soil bacterium Pseudomonas putida, catalyzes the conversion of p-hydroxyphenylacetate to 3,4-dihydroxyphenylacetate. The enzyme requires two protein components: a flavoprotein and a colorless protein referred to as the coupling protein. The flavoprotein alone in the presence of p-hydroxyphenylacetate and substrate analogs catalyzes the wasteful oxidation of NADH with the stoichiometric generation of H2O2. A 1:1 complex of the flavoprotein and coupling protein is required for stoichiometric product formation. Such complex formation also eliminates the nonproductive NADH oxidase activity of the flavoprotein. A new assay measuring the product formation activity of the enzyme was developed using homoprotocatechuate-2,3-dioxygenase, as monitoring the oxidation of NADH was not sufficient to demonstrate enzyme activity. The coupling protein does not seem to have any redox center in it. Thus, this 2-component flavin hydroxylase resembles the other aromatic hydroxylases in that the only redox chromophore present is FAD.
Resumo:
Physalis mottle virus (PhMV) belongs to the tymogroup of positive-strand RNA viruses with a genome size of 6 kb. Crude membrane preparations from PhMV-infected Nicotiana glutinosa plants catalyzed the synthesis of PhMV genomic RNA from endogenously bound template. Addition of exogenous genomic RNA enhanced the synthesis which was specifically inhibited by the addition of sense and antisense transcripts corresponding to 3' terminal 242 nucleotides as well as the 5' terminal 458 nucleotides of PhMV genomic RNA while yeast tRNA or ribosomal RNA failed to inhibit the synthesis. This specific inhibition suggested that the 5' and 3' non-coding regions of PhMV RNA might play an important role in viral replication.
Resumo:
On repeated thawing at room temperature of frozen preparations of heavy microsomes from rat livers, HMGCoA reductase activity was solubilized due to limited proteolysis. This soluble enzyme was partially purified by fractionation with ammonium sulfate and filtration on Sephacryl S-200 column. The active enzyme was coeluted with a major 92 kDa-protein and was identified as a 58kDa-protein after separation by SDS-PAGE and immunoblotting. Ethoxysilatrane, a hypocholesterolemic compound, which decreased the liver-microsomal activity of HMGCoA reductase on intra-peritonial treatment of animals, showed little effect on the enzyme activity with isolated microsomes or the 50kDa-soluble enzyme when added in the assay. But it was able to inhibit the activity of the soluble 58kDa-enzyme in a concentration-dependent, reversible manner. Cholesterol and an oxycholesterol were without effect whereas chlorophenoxyisobutyrate and ubiquinone showed small inhibition under these conditions. The extra region that links the active site domain (50kDa protein) to the membrane, present in the 58kDa-protein appears to be involved in mediating the inhibition by silatrane.
Resumo:
Partial substitution of Cu in the chain by the phosphate ion stabilizes LnSr(2)Cu(3)O(7) (Ln = Gd, Dy or Ho) in the 123 structure. The LnSr(2)Cu(2.8)(PO4)(0.2)O-y derivatives exhibit incommensurately modulated structures. The holmium oxy-phosphate derivative has been rendered superconducting by the partial substitution of Ho by Ca.
Resumo:
A regiospecific reduction of quinolines (and 1,10-phenanthroline) into the corresponding 1,2,3,4-tetrahydro derivatives using a combination of sodium cyanoborohydride and boron trifluoride etherate in refluxing methanol is described. Under the same conditions indole and acridine reduced to the corresponding dihydroderivatives, whereas acyl group transfer from oxygen to nitrogen atom is also noticed in the case of 8-acyloxyquinolines.
Resumo:
Reflection electron energy-loss spectra are reported for the family of compounds TiOx over the entire homogeneity range (0.8 < a: < 1.3). The spectra exhibit a plasmon feature on the low-energy side, while several interband transitions are prominent at higher energies. The real and imaginary parts of dielectric functions and optical conductivity for these compounds are determined using the Kramers-Kronig analysis. The results exhibit systematic behavior with varying oxygen stoichiometry.
Resumo:
A novel tandem 5-exo-trig allyl and 3-exo-trig radical cyclisation and rearrangement to copa and ylanga type sesquiterpene skeleton is reported.
Resumo:
Oxidative addition of tetrachloro-ortho-benzoquinone to lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) results in an unprecedented ring contraction-rearrangement to give diazadiphosphetidines (EtN)(2)[P(OR)(O2C6Cl4)] [P(O2C6Cl4)-[N(Et)P(OR)(2)}] (R = C6H4Br-4 or C(6)H(3)Me(2)-2,6), a process indicated to be thermodynamically favourable on the basis of PM3 calculations.
Resumo:
he ortho methoxycarbonyl substituent constitutes a sole exception in the ring closure reactions of ortho substituted aryl azides, as it provides no rate acceleration to this reaction. Pyrolysis of ''azido-meta-hemipinate'', an aryl azide containing such a substituent, led us to the title compound, a new azepinylidenepyridylacetic ester, whose structure has been established unambiguously by a single crystal X-ray diffraction study. This is the first report of a reaction involving both a ring expansion to an azaheptafulvalene and a ring extrusion to a pyridyl ring residue.
Resumo:
C19H26O4, M(r) = 318.41, orthorhombic, P2(1)2(1)2(1), a = 10.591 (1), b = 11.133 (1), c = 13.657 (2) angstrom, V = 1610.29 angstrom 3, Z = 4, D(m) (flotation in KI) = 1.301, D(x) = 1.313 g cm-3, Mo K-alpha, lambda = 0.7107 angstrom, mu = 0.85 cm-1, F(000) = 688, T = 293 K, R = 0.057 for 1253 significant reflections. The A ring is disordered with atoms C(2) and O(19) occupying two possible sites. The molecules are held together by a hydrogen bond [O(9)...O(17) = 2.89 angstrom].
Resumo:
C18H17NO3, M r = 295"34, monoclinic, C2/c, a = 11.689 (2), b = 22.934 (4), c = 11.592 (2) A, fl=100.16(3) ° , V =3058.8(8) A 3, Z=8, D,n= 1.30 (5), Dx = 1.28 Mg m -3, A(Mo Ka) = 0.7107 A, tz(Mo Ka) = 0.094 mm- 1, F(000) = 1248, T = 300 K, final R = 0.046 for 1849 observed reflections [I > 30"(/)]. The indole nucleus is slightly bent along the C(8)---C(9) bond. The phenyl ring connected to the indole moiety is rotated about the C(3)---C(10) bond by 45.8 (3) °. The carboxyl group makes a dihedral angle of 8.1 (4) ° with the mean plane of the indole moiety. Centrosymmetrically related pairs of molecules are linked through hydrogen bonds across the centre of symmetry and form dimers.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Background: Sobemoviruses are a group of RNA plant viruses that have a narrow host range. They are characterized in vitro by their stability, high thermal inactivation point and longevity. The three-dimensional structure of only one virus belonging to this group, southern bean mosaic virus (SBMV), is known. Structural studies on sesbania mosaic virus (SMV), which is closely related to SBMV, will provide details of the molecular interactions that are likely to be important in the stability and assembly of sobemoviruses. Results: We have determined the three-dimensional structure of SMV at 3 Angstrom resolution. The polypeptide fold and quaternary organization are very similar to those of SBMV. The capsid consists of sixty icosahedral asymmetric units, each comprising three copies of a chemically identical coat protein subunit, which are designated as A, B and C and are in structurally different environments. Four cation-binding sites have been located in the icosahedral asymmetric unit. Of these, the site at the quasi-threefold axis is not found in SBMV. Structural differences are observed in loops and regions close to this cation-binding site. Preliminary studies on ethylene diamine tetra acetic acid (EDTA) treated crystals suggest asymmetry in removal of the quasi-equivalent cations at the AB, BC, and AC subunit interfaces. Conclusions: Despite the overall similarity between SMV and SBMV in the nature of the polypeptide fold, these viruses show a number of differences in intermolecular interactions. The polar interactions at the quasi-threefold axis are substantially less in SMV and positively charged residues on the RNA-facing side of the protein and in the N-terminal arm are not particularly well conserved. This suggests that protein-RNA interactions are likely to be different between the two viruses.