547 resultados para PASSIVE FILMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report the results of the studies on structural, microstructural, transport and magnetotransport behavior of L0.8-xPr0.2SrxMnO3 (LPSMO) (x=0.1, 0.2 and 0.3) manganite films grown on (100) single crystalline SrTiO3 (STO) substrate using low cost chemical solution deposition (CSD) method. Films with similar compositions were also grown using sophisticated pulsed laser deposition (PLD) technique and results of structural and transport studies obtained for CSD grown films were compared with PLD grown films. Structural studies show that all the CSD and PLD grown films possess single crystalline nature with compressive and tensile strain, respectively. Surface morphology, studied using atomic force microscope (AFM), reveals the island like grain morphology in CSD grown films while PLD grown films possess smooth film surfaces. Carrier density dependent transport properties of the films have been discussed in the context of zener double exchange (ZDE) mechanism. Lower resistivity and higher transition temperature (T-p) observed in CSD grown films as compared to PLD grown films have been discussed in the light of structural strain and surface morphology of the films. Various models and mechanisms have been employed to understand the charge transport in CSD and PLD grown films. Also, observation of low temperature resistivity minima behavior in all the CSD and PLD grown LPSMO films has been explained in the context of electron-electron scattering mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Downscaling of yttria stabilized zirconia (YSZ) based electrochemical devices and gate oxide layers requires successful pattern transfer on YSZ thin films. Among a number of techniques available to transfer patterns to a material, reactive ion etching has the capability to offer high resolution, easily controllable, tunable anisotropic/isotropic pattern transfer for batch processing. This work reports inductively coupled reactive ion etching studies on sputtered YSZ thin films in fluorine and chlorine based plasmas and their etch chemistry analyses using x-ray photoelectron spectroscopy. Etching in SF6 plasma gives an etch rate of 7 nm/min chiefly through physical etching process. For same process parameters, in Cl-2 and BCl3 plasmas, YSZ etch rate is 17 nm/min and 45 nm/min, respectively. Increased etch rate in BCl3 plasma is attributed to its oxygen scavenging property synergetic with other chemical and physical etch pathways. BCl3 etched YSZ films show residue-free and smooth surface. The surface atomic concentration ratio of Zr/Y in BCl3 etched films is closer to as-annealed YSZ thin films. On the other hand, Cl-2 etched films show surface yttrium enrichment. Selectivity ratio of YSZ over silicon (Si), silicon dioxide (SiO2) and silicon nitride (Si3N4) are 1:2.7, 1:1, and 1:0.75, respectively, in BCl3 plasma. YSZ etch rate increases to 53 nm/min when nonoxygen supplying carrier wafer like Si3N4 is used. (C) 2015 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the structure, microstructure and magnetic properties of Fe-Ga thin films deposited using DC magnetron sputtering technique on Si(100) substrate kept at different temperatures. Structural studies employing X-ray diffraction and TEM revealed the presence of only disordered A2 phase in the film. Columnar growth of nanocrystalline grains from the substrate was observed in the film deposited at room temperature. With increase in substrate temperature the grain size as well as surface roughness was found to increase. The magnetization of the films deposited at higher substrate temperatures were Found to saturate at lower magnetic held as compared to the room temperature deposited Film. Coercivity was found to decrease with increasing substrate temperature upto a minimum value of similar to 2 Oe for the film deposited at 450 degrees C and with further increase in substrate temperature it was found to increase. A maximum magnetostriction of 200 mu-strains was also observed for the film deposited at 450 degrees C. (C) 2015 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of SbxSe60-xS40( x= 10, 20, 30, and 40) were deposited by thermal evaporation from the prepared bulk materials on glass substrates held at room temperature. The film compositions were confirmed by using energy dispersive X-ray spectroscopy. X-ray diffraction studies revealed that all the as- deposited films have amorphous structure. The optical constants ( n, k, E-g, E-e, B-1/2) of the films were determined from optical transmittance data, in the spectral range 500-1200 nm, using the Swanepoel method. An analysis of the optical absorption spectra revealed an Urbach's tail in the low absorption region, while in the high absorption region an indirect band gap characterizes the films with different compositions. It was found that the optical band gap energy decreases as the Sb content increases. Finally, in terms of the chemical bond approach, degree of disorderness has been applied to interpret the decrease in the optical gap with increasing Sb content in SbxSe60-xS40 thin films. The changes in X-ray photo electron spectra and Raman shift in the films show compositional dependence. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally demonstrate photobleaching (PB) in Ge22As22Se56 thin films, when illuminated with a diode pumped solid state laser (DPSSL) of wavelength 671 nm, which is far below the optical bandgap of the sample. Interestingly, we found that PB is a slow process and occurs even at moderate pump beam intensity of 0.2 W/cm(2), however the kinetics remain rather different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermally evaporated As20Sb20S60 amorphous film of 800 nm thickness was subjected to light exposure for photo induced studies. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm(-1). PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at lambda (max) of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of sputtering parameters such as gas pressure and power on the structure, microstructure and magnetic properties of sputtered Tb-Fe thin films was investigated. X-ray diffraction and transmission electron microscopy studies showed that all the films were amorphous in nature irrespective of the sputtering parameters. A fine island kind of morphology was observed at low sputtering power whereas large clusters were seen at higher sputtering power. While the composition of Tb-Fe films remained constant with increasing sputtering power, the magnetic behaviour was found to change from superparamagnetic to ferromagnetic. On the other hand, the increase in argon gas pressure was found to deplete the iron concentration in Tb-Fe thin films, which in turn reduced the anisotropy and Curie temperature. Annealing of the films at 773 K did not result in any crystallization and the magnetic properties were also found to remain unchanged. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple microstructural rationale for successful anodization of metallic films into ordered oxide nanostructures has been identified. It applies to three of the most commonly studied systems, Zr, Ti and Al films and can be extended to other such oxides. A dense Zone T or II microstructure, in sputtered films, is the most critical ingredient. While T-substrate > 0.3T(melting) Ching is the simplest route, pressure and plasma heating can also be exploited. Such microstructures are also associated with a unique growth stress signature. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterned substrate growth has been a subject of much interest. In this work, characteristics of some statistical properties of a film grown on triangular and vicinal substrates using the Family model are studied. Substrate size and tilt angle are varied. It is found that the interface width and the correlation function increase as the roughness of the pattern is increased. The new scaling exponents are calculated and anomalous scaling is obtained. The transient persistence probability does not show a power law relation when the initial surface is sufficiently rough. The initial rough surface also causes multifractal behavior in the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (p21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 degrees C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 mu m. This indicates the suitability of the films for optical switching applications at infrared frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of oxygen flow rate during the reactive magnetron sputtering on the compositional, structural, optical and electrical properties of HfO2 films. We also studied the influence of annealing temperature on the structural and electrical properties of optimized HfO2 films of 25 to 30 nm thick. X-ray photoelectron study reveals that the films deposited at 15 SCCM of oxygen flow rate are stoichiometric and have an optical band gap of 5.86 eV. X-ray diffraction indicates that films without oxygen flow are amorphous, and beyond an oxygen flow rate of 5 SCCM exhibit polycrystalline monoclinic structure. At an annealing temperature of 600 degrees C, tetragonal phase was observed besides the monoclinic phase. The dielectric constant of 11 and low leakage currents of 1 x 10(-7) A/cm(2) were achieved for the stoichiometric films. As-deposited films show significant frequency dispersion due to the presence of defect states at the HfO2/Si interface, and it reduces after annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exposure with band gap light of thermally evaporated As40Sb15Se45 amorphous film of 800 nm thickness, were found to be accompanied by optical changes. The as-prepared and illuminated thin films were studied by X-ray diffraction, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy and Raman spectroscopy. The optical band gap was reduced due to photo induced effects along with the increase in disorder. These optical properties changes are due to the change of homopolar bond densities. The core level peak shifting in XPS spectra and Raman shift supports the optical changes happening in the film due to light exposure.