516 resultados para Dielectric materials
Resumo:
Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.
Resumo:
Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .
Resumo:
Na0.5Bi0.5TiO3 (NBT) and its derivatives have prompted a great surge in interest owing to their potential as lead-free piezoelectrics. In spite of five decades since its discovery, there is still a lack of clarity on crucial issues such as the origin of significant dielectric relaxation at room temperature, structural factors influencing its depoling, and the status of the recently proposed monoclinic (Cc) structure vis-a-vis the nanosized structural heterogeneities. In this work, these issues are resolved by comparative analysis of local and global structures on poled and unpoled NBT specimens using electron, x-ray, and neutron diffraction in conjunction with first-principles calculation, dielectric, ferroelectric, and piezoelectric measurements. The reported global monoclinic (Cc) distortion is shown not to correspond to the thermodynamic equilibrium state at room temperature. The global monocliniclike appearance rather owes its origin to the presence of local structural and strain heterogeneities. Poling removes the structural inhomogeneities and establishes a long-range rhombohedral distortion. In the process the system gets irreversibly transformed from a nonergodic relaxor to a normal ferroelectric state. The thermal depoling is shown to be associated with the onset of incompatible in-phase tilted octahedral regions in the field-stabilized long range rhombohedral distortion.
Resumo:
Surface-functionalized multiwall carbon nanotubes (MWCNTs) are incorporated in poly(methyl methacrylate)/styrene acrylonitrile (PMMA/SAN) blends and the pretransitional regime is monitored in situ by melt rheology and dielectric spectroscopy. As the blends exhibit weak dynamic asymmetry, the obvious transitions in the melt rheology due to thermal concentration fluctuations are weak. This is further supported by the weak temperature dependence of the correlation length ( approximate to 10-12 angstrom) in the vicinity of demixing. Hence, various rheological techniques in both the temperature and frequency domains are adopted to evaluate the demixing temperature. The spinodal decomposition temperature is manifested in an increase in the miscibility gap in the presence of MWCNTs. Furthermore, MWCNTs lead to a significant slowdown of the segmental dynamics in the blends. Thermally induced phase separation in the PMMA/SAN blends lead to selective localization of MWCNTs in the PMMA phase. This further manifests itself in a significant increase in the melt conductivity.
Resumo:
The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.
Resumo:
The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.
Resumo:
This work reports the processing-microstructure-property correlation of novel HA-BaTiO3-based piezobiocomposites, which demonstrated the bone-mimicking functional properties. A series of composites of hydroxyapatite (HA) with varying amounts of piezoelectric BaTiO3 (BT) were optimally processed using uniquely designed multistage spark plasma sintering (SPS) route. Transmission electron microscopy imaging during in situ heating provides complementary information on the real-time observation of sintering behavior. Ultrafine grains (0.50m) of HA and BT phases were predominantly retained in the SPSed samples. The experimental results revealed that dielectric constant, AC conductivity, piezoelectric strain coefficient, compressive strength, and modulus values of HA-40wt% BT closely resembles with that of the natural bone. The addition of 40wt% BT enhances the long-crack fracture toughness, compressive strength, and modulus by 132%, 200%, and 165%, respectively, with respect to HA. The above-mentioned exceptional combination of functional properties potentially establishes HA-40wt% BT piezocomposite as a new-generation composite for orthopedic implant applications.
Resumo:
Energy research is to a large extent materials research, encompassing the physics and chemistry of materials, including their synthesis, processing toward components and design toward architectures, allowing for their functionality as energy devices, extending toward their operation parameters and environment, including also their degradation, limited life, ultimate failure and potential recycling. In all these stages, X-ray and electron spectroscopy are helpful methods for analysis, characterization and diagnostics for the engineer and for the researcher working in basic science.This paper gives a short overview of experiments with X-ray and electron spectroscopy for solar energy and water splitting materials and addresses also the issue of solar fuel, a relatively new topic in energy research. The featured systems are iron oxide and tungsten oxide as photoanodes, and hydrogenases as molecular systems. We present surface and subsurface studies with ambient pressure XPS and hard X-ray XPS, resonant photoemission, light induced effects in resonant photoemission experiments and a photo-electrochemical in situ/operando NEXAFS experiment in a liquid cell, and nuclear resonant vibrational spectroscopy (NRVS). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Magneto-electric composites comprising Na0.5Bi0.5TiO3 (NBT) and MnFe2O4 (MFO) were fabricated using their fine powders obtained via sol-gel method. X-ray diffraction and scanning electron microscopy results confirmed the single-phase formation of NBT and MFO and the composite nature when these were mixed and sintered at appropriate temperatures. The dielectric constant (epsilon(r)) and dielectric loss (D) decreased with increase in frequency (40-110 MHz). Room temperature magnetization measurements established these composites to be soft magnetic. Further, the nature of these composites were established to be magneto-electric at 300 K. The highest ME response of 0.19 % was observed in 30NBT-70MFO composite. The ME coefficient (alpha) was 240 mV/cm Oe for the same composition. The present study demonstrated the effectiveness of NBT/MFO as a lead-free multiferroic composite and provides an alternative for environment-friendly ME device applications.
Resumo:
The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.
Resumo:
Zinc substituted cobalt ferrite powders {Co(1-x)ZnxFe2O4} (0.0 <= x <= 0.5) were prepared by the solution combustion method. The structural, morphological, magnetic and electrical properties of as synthesized samples were studied. Powder X-ray diffraction patterns reveals single phase, cubic spinel structure with space group No. Fd (3) over barm (227). As zinc concentration increases, the lattice constant increases and the crystallite size decreases. The minimum crystallite size of similar to 12 nm was observed for x = 0.5 composition. The synthesized ferrite compounds show ferrimagnetic behavior, with coercivity value of 10779 Oe (Hard ferrite) at 20 K and 1298 Oe (soft ferrite) at room temperature (RT). The maximum saturation magnetization recorded for the Co0.5Zn0.5Fe2O4 composition was 99.78 emu g(-1) and 63.83 emu g(-1) at 20 K and RT respectively. The dielectric parameters such as dielectric constant, loss tangent and AC conductivity were determined as a function of frequency at RT. The magnetic and dielectric properties of the samples illustrates that the materials were quite useful for the fabrication of nanoelectronic devices. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Structural Health Monitoring (SHM) is an effective extension of NDE to reduce down time and cost of Inspection of structural components. On – line monitoring is an essential part of SHM. Acoustic Emission Techniques have most of the desirable requirements of an effective SHM tool. With the kind of advancement seen in the last couple of decades in the field of electronics, computers and signal processing technologies it can only be more helpful in obtaining better and meaningful quantitative results which can further enhance the potential of AET for the purpose. Advanced Composite materials owing to their specific high performance characteristics are finding a wide range of engineering applications. Testing and Evaluation of this category of materials and SHM of composite structures have been very challenging problems due to the very nature of these materials. Mechanical behaviour of fiber composite materials under different loading conditions is complex and involves different types of failure mechanisms. This is where the potential of AET can be exploited effectively. This paper presents an over view of some relevant studies where AET has been utilised to test, evaluate and monitor health of composite structures.
Resumo:
The frequency-dependent dielectric relaxation of Pb0.94Sr0.06](Mn1/3Sb2/3)(0.05)(Zr0.52Ti0.48)(0.95)]O-3 ceramics, synthesized in pure perovskite phase by a solid-state reaction technique is investigated in the temperature range from 303 to 773 K by alternating-current impedance spectroscopy. Using Cole-Cole model, an analysis of the imaginary part of the dielectric permittivity with frequency is performed assuming a distribution of relaxation times. The scaling behavior of the imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures. The variation of dielectric constant with temperature is explained considering the space-charge polarization. The SEM indicates that the sample has single phase with an average grain size similar to 14.2 mu m. The material exhibits tetragonal structure. A detailed temperature dependent dielectric study at various frequencies has also been performed. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.