503 resultados para BAND-STRUCTURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four neutral polynuclear magnetic clusters, (Mn6Mn2Na2I)-Mn-III-Na-II(N-3)(8)(mu(1)-O)(2)(L-1)(6)(CH3OH)(2)] (1), (Mn6Na2I)-Na-III(N-3)(4)(mu(4)-O)(2)(L-2)(4)(CH3COO)(4)] (2), Ni-5(II)(N-3)(4)(HL1)(4)(HCOO)(2)(CH3OH)(2)(H2O)(2)]center dot 2CH(3)OH (3) and (Ni4Na2I)-Na-II(N-3)(4)(HL2)(6)]center dot 2CH(3)OH (4) have been synthesized using tetradentate ligands H2L1-2 along with azide as a co-ligand. H2L1-2 are the products formed in situ upon condensation of 2-hydroxy-3-methoxybenzaldehyde with 1-aminopropan-2-ol and 1-aminopropan-3-ol, respectively. Single crystal X-ray diffraction and bond valence sum calculation showed that complex 1 is composed of both Mn-III and Mn-II. Complex 3 contains coordinated formate, which was formed upon in situ oxidation of methanol. The magnetic study over a wide range of temperatures of all the complexes (1-4) showed that 1 and 2 are antiferromagnetic whereas other two (3-4) are predominantly ferromagnetic. The estimated ground states of the complexes are S approximate to 3(1), S = 4(2), S = 5(3) and S approximate to 4(4), respectively. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This commentary highlights the effectiveness of optoelectronic properties of polymer semiconductors based on recent results emerging from our laboratory, where these materials are explored as artificial receptors for interfacing with the visual systems. Organic semiconductors based polymer layers in contact with physiological media exhibit interesting photophysical features, which mimic certain natural photoreceptors, including those in the retina. The availability of such optoelectronic materials opens up a gateway to utilize these structures as neuronal interfaces for stimulating retinal ganglion cells. In a recently reported work entitled ``A polymer optoelectronic interface provides visual cues to a blind retina,'' we utilized a specific configuration of a polymer semiconductor device structure to elicit neuronal activity in a blind retina upon photoexcitation. The elicited neuronal signals were found to have several features that followed the optoelectronic response of the polymer film. More importantly, the polymer-induced retinal response resembled the natural response of the retina to photoexcitation. These observations open up a promising material alternative for artificial retina applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports first observations of transition in recirculation pattern from an open-bubble type axisymmetric vortex breakdown to partially open bubble mode through an intermediate, critical regime of conical sheet formation in an unconfined, co-axial isothermal swirling flow. This time-mean transition is studied for two distinct flow modes which are characterized based on the modified Rossby number (Ro(m)), i.e., Ro(m) <= 1 and Ro(m) > 1. Flow modes with Ro(m) <= 1 are observed to first undergo cone-type breakdown and then to partially open bubble state as the geometric swirl number (S-G) is increased by similar to 20% and similar to 40%, respectively, from the baseline open-bubble state. However, the flow modes with Ro(m) > 1 fail to undergo such sequential transition. This distinct behavior is explained based on the physical significance associated with Ro(m) and the swirl momentum factor (xi). In essence, xi represents the ratio of angular momentum distributed across the flow structure to that distributed from central axis to the edge of the vortex core. It is observed that xi increases by similar to 100% in the critical swirl number band where conical breakdown occurs as compared to its magnitude in the S-G regime where open bubble state is seen. This results from the fact that flow modes with Ro(m) <= 1 are dominated by radial pressure gradient due to swirl/rotational effect when compared to radial pressure deficit arising from entrainment (due to the presence of co-stream). Consequently, the imparted swirl tends to penetrate easily towards the central axis causing it to spread laterally and finally undergo conical sheet breakdown. However, the flow modes with Ro(m) > 1 are dominated by pressure deficit due to entrainment effect. This blocks the radial inward penetration of imparted angular momentum thus preventing the lateral spread of these flow modes. As such these structures fail to undergo cone mode of vortex breakdown which is substantiated by a mere 30%-40% rise in xi in the critical swirl number range. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synergizing graphene on silicon based nanostructures is pivotal in advancing nano-electronic device technology. A combination of molecular dynamics and density functional theory has been used to predict the electronic energy band structure and photo-emission spectrum for graphene-Si system with silicon as a substrate for graphene. The equilibrium geometry of the system after energy minimization is obtained from molecular dynamics simulations. For the stable geometry obtained, density functional theory calculations are employed to determine the energy band structure and dielectric constant of the system. Further the work function of the system which is a direct consequence of photoemission spectrum is calculated from the energy band structure using random phase approximations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dy-doped GdOOH microspherical structures were prepared in minutes without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse sphere-like entities with each one representing a three-level hierarchy in its formation. Dy:GdOOH powder samples show a bright blue-green luminescence under UV excitation, making these structures potentially important in the field of optical and luminescent devices. Finally, thermal conversion to the corresponding oxide structures occurs at modest temperatures, spherical morphology intact and with enhanced luminescence behaviour. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid nanocomposites of polycaprolactone (PCL) with multiwall carbon nanotubes (MWNTs) and silver nanoparticles (nAg) were prepared by melt mixing. Synergetic effect of the two nanofillers (MWNT and nAg) in PCL matrix was evaluated for dielectric and antibacterial properties. Dielectric results showed that the addition of nAg as filler in PCL matrix (PCL/nAg) had no effect on conductivity, whereas addition of MWNT in PCL matrix (PCL/MWNT) caused a sharp increase in conductivity of PCL. Interestingly, the hybrid nanocomposite (PCL/MWNT/nAg) incorporating MWNT and nAg also exhibited high electrical conductivity. The hybrid composite was found to have antibacterial property similar to that of PCL/nAg composite for lower loading of nAg. This study demonstrates that the synergetic interaction of the nanofillers in the hybrid nanocomposite improves both electrical conductivity and antibacterial properties of PCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of luminescent 4-(2-(4-alkoxyphenyl)-6-methoxypyridin-4-yl) benzonitriles containing three ring systems, viz. methoxy pyridine, benzonitrile and alkoxy benzene with variable alkoxy chain length, with bent-core structures were synthesized as potential mesogens and characterized by spectral techniques. Their liquid crystalline behavior was investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and variable temperature powder X-ray diffraction (PXRD) measurements. The study reveals that compounds with shorter chain lengths i.e. m = 4] exclusively exhibit the nematic phase while compounds with longer chain lengths i.e. m = 6-14 (only even)] show predominantly the orthorhombic columnar phase. Single crystal X-ray analysis of 4-(2-(4-butyloxy/octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitriles reveals that they possess slightly non-planar unsymmetrical bent structures and their molecular packing consists of nonconventional H-bond interactions; it also explains the observed liquid crystalline phase. An optical study indicates that the title compounds are good blue emitting materials showing absorption and emission bands in the range 335-345 nm and 415-460 nm, respectively. An electrochemical study of 4-(2-(4-octyloxyphenyl)-6-methoxypyridin-4-yl) benzonitrile shows a band gap of 1.89 eV with HOMO and LUMO energy levels of -5.06 and -3.17 eV, respectively. Also, density functional theory (DFT) calculations confirm its optimized geometry, electronic absorption and frontier molecular orbital distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Folding into compact globular structures, with well-defined modules of secondary structure, appears to be a characteristic of long polypeptide chains, with a specific patterning of coded amino acid residues along the length of sequence. Cooperative hydrogen bond driven secondary structure formation and solvent forces, which contribute favorably to the entropy of folding, by promoting compaction of the polymeric chain, have long been discussed as major determinants of the folding process. First principles design approaches, which use non-coded amino acids, employ an alternative structure directing strategy, by using amino acid residues which exhibit a strong conformational bias for specific regions of the Ramachandran map. This overview of ongoing studies in the authors' laboratory, attempts to explore the use of conformationally restricted amino acid residues in the design of peptides with well-defined secondary structures. Short peptides composed of 20 genetically coded amino acids usually exist in solution as an ensemble of equilibrating conformations. Apolar peptide sequences, which are readily soluble in organic solvents like chloroform and methanol, facilitate formation of structures which are predominately driven by intramolecular hydrogen bond formation. The choice of sequences containing residues with a limited range of conformational choices strongly favors formation of local turn structures, stabilized by short range intramolecular hydrogen bonds. Two residue beta-turns can nucleate either helical or hairpin folding, depending on the precise conformation of the turn segment Restriction of the conformational space available to amino acid residues is easily achieved by introduction of an additional alkyl group at the C alpha carbon atom or by side chain backbone cyclization, as in proline. Studies of synthetic sequences incorporating two prototype residues alpha-aminoisobutyric acid (Aib) and D-proline (DPro) illustrate the utility of the strategy in construction of helices and hairpins. Extensions to the design of conformationally switchable sequences and structurally defined hybrid peptides containing backbone homologated residues are also surveyed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ramachandran map clearly delineates the regions of accessible conformational (phi-) space for amino acid residues in proteins. Experimental distributions of phi, values in high-resolution protein structures, reveal sparsely populated zones within fully allowed regions and distinct clusters in apparently disallowed regions. Conformational space has been divided into 14 distinct bins. Residues adopting these relatively rare conformations are presented and amino acid propensities for these regions are estimated. Inspection of specific examples in a completely arid, fully allowed region in the top left quadrant establishes that side-chain and backbone interactions may provide the energetic compensation necessary for populating this region of phi- space. Asn, Asp, and His residues showed the highest propensities in this region. The two distinct clusters in the bottom right quadrant which are formally disallowed on strict steric considerations correspond to the gamma turn (C7 axial) conformation (Bin 12) and the i + 1 position of Type II turns (Bin 13). Of the 516 non-Gly residues in Bin 13, 384 occupied the i + 1 position of Type II turns. Further examination of these turn segments revealed a high propensity to occur at the N-terminus of helices and as a tight turn in hairpins. The strand-helix motif with the Type II turn as a connecting element was also found in as many as 57 examples. Proteins 2014; 82:1101-1112. (c) 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donor-acceptor (D-A) conjugated polymers have attracted a good deal of attention in recent years. In D-A systems, the introduction of electron withdrawing groups reduces E-g by lowering the LUMO levels whereas, the introduction of electron donating groups reduces E-g by raising the HOMO levels. Also, conjugated polymers with desired HOMO and LUMO energy levels could be obtained by the proper selection of donor and acceptor units. Because of this reason, D-A conjugated polymers are emerging as promising materials particularly for polymer light emitting diodes (PLEDs) and polymer solar cells (PSCs). We report the design and synthesis of four new narrow band gap donor-acceptor (D-A) conjugated polymers, PTCNN, PTCNF, PTCNV and PTCNO, containing electron donating 3,4-didodecyloxythiophene and electron accepting cyanovinylene units. The effects of further addition of electron donating and electron withdrawing groups to the repeating unit of a D-A conjugated polymer (PTCNN) on its optical and electrochemical properties are discussed. The studies revealed that the nature of D and A units as well as the extent of alternate D-A structure influences the optical and the electrochemical properties of the polymers. All the polymers are thermally stable up to a temperature of 300 degrees C under nitrogen atmosphere. The electrochemical studies revealed that the polymers possess low-lying HOMO energy levels and low-lying LUMO energy levels. In the UV-Vis absorption study, the polymer films displayed broad absorption in the wavelength region of 400-700 nm. The polymers exhibited low optical band gaps in the range 1.70 - 1.77 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass balance between metal and electrolytic solution, separated by a moving interface, in stable pit growth results in a set of governing equations which are solved for concentration field and interface position (pit boundary evolution). The interface experiences a jump discontinuity in metal concentration. The extended finite-element model (XFEM) handles this jump discontinuity by using discontinuous-derivative enrichment formulation, eliminating the requirement of using front conforming mesh and re-meshing after each time step as in the conventional finite-element method. However, prior interface location is required so as to solve the governing equations for concentration field for which a numerical technique, the level set method, is used for tracking the interface explicitly and updating it over time. The level set method is chosen as it is independent of shape and location of the interface. Thus, a combined XFEM and level set method is developed in this paper. Numerical analysis for pitting corrosion of stainless steel 304 is presented. The above proposed model is validated by comparing the numerical results with experimental results, exact solutions and some other approximate solutions. An empirical model for pitting potential is also derived based on the finite-element results. Studies show that pitting profile depends on factors such as ion concentration, solution pH and temperature to a large extent. Studying the individual and combined effects of these factors on pitting potential is worth knowing, as pitting potential directly influences corrosion rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the determination of the internal structure of heterogeneous nanoparticle systems including inverted core-shell (CdS core and CdSe shell) and alloyed (CdSeS) quantum dots using depth-resolved, variable-energy X-ray photoelectron spectroscopy (XPS). A unique feature of this work is the combination of photoelectron spectroscopy performed at lower X-ray energies (400-700 eV), to achieve surface sensitivity, with bulk sensitive measurements at high photon energies (>2000 eV), thereby providing detailed information about the whole nanoparticle structure with a great accuracy. The use of high photon energies furthermore allows us to investigate nanoparticles much larger than those studied thus far. This capability is a consequence of the much-increased mean free path of the photoelectron achieved at high excitation energies. Our results show that the actual structures of the synthesized nanoparticles are considerably different from the nominal, targeted structures, which can be post facto rationalized in terms of the reactivity of different constituents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile sol-gel process onto larger substrates. Temperature dependence of the process control of deposition and desired phase formations was studied in detail. Films were analyzed for complete transformation from amorphous to polycrystalline, with textured structures for stannite phase, as reflected from the X-ray diffraction and with nearly stoichiometric compositions of Cu:Co:Sn:S = 2:0:1:0:1:0:4:0 from EDAX analysis. Morphological investigations revealed that the CCTS films with larger grains, on the order of its thickness, were synthesized at higher temperature of 500 degrees C. The optimal band gap for application in photovoltaics was estimated to be 1.4 eV. Devices with SLG/CCTS/Al geometry were fabricated for real time demonstration of photoconductivity under A.M 1.5 G solar and 1064 rim infrared laser illuminations. A photodetector showed one order current amplification from similar to 1.9 X 10(-6) A in the dark to 2.2 x 10(-5) A and 9.8 X 10(-6) A under A.M 1.5 G illumination and 50 mW cm(-2) IR laser, respectively. Detector sensitivity, responsivity, external quantum efficiency, and gain were estimated as 4.2, 0.12 A/W, 14.74% and 14.77%, respectively, at 50 mW cm(-2) laser illuminations. An ON and OFF ratio of 2.5 proved that CCTS can be considered as a potential absorber in low cost photovoltaics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three copper-azido complexes Cu-4(N-3)(8)(L-1)(2)(MeOH)(2)](n) (1), Cu-4(N-3)(8)(L-1)(2)] (2), and Cu-5(N-3)(10)(L-1)(2)](n) (3) L-1 is the imine resulting from the condensation of pyridine-2-carboxaldehyde with 2-(2-pyridyl)ethylamine] have been synthesized using lower molar equivalents of the Schiff base ligand with Cu(NO3)(2)center dot 3H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of the complexes 1 and 2 contains Cu-4(II) building blocks; however, they have distinct basic and overall structures due to a small change in the bridging mode of the peripheral pair of copper atoms in the linear tetranudear structures. Interestingly, these changes are the result of changing the solvent system (MeOH/H2O to EtOH/H2O) used for the synthesis, without changing the proportions of the components (metal to ligand ratio 2:1). Using even lower proportions of the ligand, another unique complex was isolated with Cu-5(II) building units, forming a two-dimensional complex (3). Magnetic susceptibility measurements over a wide range of temperature exhibit the presence of both antiferromagnetic (very weak) and ferromagnetic exchanges within the tetranuclear unit structures. Density functional theory calculations (using B3LYP functional, and two different basis sets) have been performed on the complexes 1 and 2 to provide a qualitative theoretical interpretation of their overall magnetic behavior.