470 resultados para VAPOR-LIQUID-EQUILIBRIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low resistance motion of liquids on a well-defined path is beneficial for several MEMS based applications including energy harvesting and switching. By eliminating the contact line we demonstrate low resistance motion of a liquid bulge on pre-wetted strips. The bulge appears on wetted strips due to a morphological instability. The wetted strip confines the mercury bulge and defines its path of motion. Resistance to initiate motion of the bulge was studied experimentally and compared to other cases. An electret based energy harvesting device using bulge motion has been fabricated and tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current global energy scenario and the environmental deterioration aspect motivates substituting fossil fuel with a renewable energy resource - especially transport fuel. This paper reviews the current status of trending biomass to liquid (BTL) conversion processes and focuses on the technological developments in Fischer Tropsch (FT) process. FT catalysts in use, and recent understanding of FT kinetics are explored. Liquid fuels produced via FT process from biomass derived syngas promises an attractive, clean, carbon neutral and sustainable energy source for the transportation sector. Performance of the FT process with various catalysts, operating conditions and its influence on the FT products are also presented. Experience from large scale commercial installations of FT plants, primarily utilizing coal based gasifiers, are discussed. Though biomass gasification plants exist for power generation via gas engines with power output of about 2 MWe; there are only a few equivalent sized FT plants for biomass derived syngas. This paper discusses the recent developments in conversion of biomass to liquid (BTL) transportation fuels via FT reaction and worldwide attempts to commercialize this process. All the data presented and analysed here have been consolidated from research experiences at laboratory scale as well as from industrial systems. Economic aspects of BTL are reviewed and compared. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the interactions between graphene oxide (GO) and biomolecules is very crucial for the development of biomedical applications based on GO. This study reports the first observation of the spontaneous formation of self-assembled liquid crystals and three-dimensional hydrogels of graphene oxide with double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-stranded DNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composition and microstructure of the composite films can be tailored by controlling the CVD process parameters if an appropriate model can be suggested for quantitative prediction of growth. This is possible by applying equilibrium thermodynamics. A modification of such standard modeling procedure was required to account for the deposition of a hybrid film comprised of carbon nanotubes (CNTs), metallic iron (Fe), and magnetite (Fe3O4), a composite useful for energy storage. In contrast with such composite nature of the deposits obtained by inert-ambient CVD using Fe(acac)3 as precursor, equilibrium thermodynamic modeling with standard procedure predicts the deposition of only Fe3C and carbon, without any co-deposition of Fe and Fe3O4. A modification of the procedure comprising chemical reasoning is therefore proposed herein, which predicts simultaneous deposition of FeO1-x, Fe3C, Fe3O4 and C. At high temperatures and in a carbon-rich atmosphere, these convert to Fe3O4, Fe and C, in agreement with experimental CVD. Close quantitative agreement between the modified thermodynamic modeling and experiment validates the reliability of the modified procedure. Understanding of the chemical process through thermodynamic modeling provides potential for control of CVD process parameters to achieve desired hybrid growth. (C) 2016 Elsevier B.V. All rights reserved.