489 resultados para Magnetic spectrometer
Resumo:
Ground state magnetic properties are studied by incorporating the super-exchange interaction (J(se)) in the spin-dependent Falicov-Kimball model (FKM) between localized (f-) electrons on a triangular lattice for half filled case. Numerical diagonalization and Monte-Carlo simulation are used to study the ground state magnetic properties. We have found that the magnetic moment of (d-) and (f-) electrons strongly depend on the value of Hund's exchange (J), super-exchange interaction (J(se)) and also depends on the number of (d-) electrons (N-d). The ground state changes from antiferromagnetic (AFM) to ferromagnetic (FM) state as we decrease (N-d). Also the density of d electrons at each site depends on the value of J and J(se).
Resumo:
We have synthesized Fe/Fe3C magnetic nanoparticles embedded in an amorphous carbon globule by pyrolysing of benzene, ferrocene and hydroboric acid. The diameter of the globules is similar to 1 mu m and that of Fe/Fe3C magnetic nanoparticles is similar to 40 nm. The globules exhibit ferromagnetic like behavior and the magnetization as well as the coercivity is found to increases with decreasing temperature.
Resumo:
A series of multiferroic materials with the compositional formula, Tb1 - xDyxMnO3 (where x=0, 0.1, 0.2, 0.3 and 0.4) were prepared by the sol gel method. After characterizing the samples structurally, a systematic investigation of specific heat, magnetization and dielectric properties over the temperature range, 4-300 K, was undertaken. Based on these studies, it was found that all the samples exhibit a transition at 40 K and the observed behavior may be attributed to the ordering of Mn3+ ions. Further, all the five samples are found to exhibit a ferroelectric transition in the temperature range 20-24 K. Finally, yet another transition was also exhibited by all the samples at temperatures below 10 K and is attributed to the antiferromagnetic (AF) ordering of rare-earth ionic moments. The magnetic entropy of all the samples was also computed with the help of their heat capacity data. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Cost effective and low temperature synthesis methods namely solution combustion and hydrothermal methods were used to prepare chromium incorporated nanocrystalline zinc ferrites. The effect of incorporation of low concentration Cr3+ ions on the structural, morphological, magnetic and transport properties of the zinc ferrite compounds were investigated. The crystalline nature and size variation with chromium content were valid from powder x-ray diffraction. Particles size and crystallite size variation were valid from scanning electron microscopy and transmission electron microscopy respectively. With the increase in chromium incorporation, the crystallite and particles sizes were decreased. Fourier transform infrared spectroscopy (FTIR) studies confirmed the presence of strong metal-oxygen bonds. The elastic properties of the materials in both the methods were estimated by FTIR studies. Magnetic properties namely saturation magentization, remanent magnetization and coercivity values were decreased with increase in Cr3+ ions concentration. The dielectric properties of the samples decreased with increase in the Cr3+ ions. The dielectric constant was observed to be of the order of 10(6) at low frequency and almost 1 at higher frequency range. The activation energy estimated using Arrhenius plots was of the order of 0.182 eV and 0.368 eV respectively for the compounds prepared by solution combustion and hydrothermal methods. The emission spectra of the samples excited at 344 nm were reported using photoluminescence (PL) spectroscopy. Further, the approximate energy band gap(E-g) was estimated from PL studies. The E-g of the materials were lie in the range of 2.11-1.98 eV. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
Purpose: A prior image based temporally constrained reconstruction ( PITCR) algorithm was developed for obtaining accurate temperature maps having better volume coverage, and spatial, and temporal resolution than other algorithms for highly undersampled data in magnetic resonance (MR) thermometry. Methods: The proposed PITCR approach is an algorithm that gives weight to the prior image and performs accurate reconstruction in a dynamic imaging environment. The PITCR method is compared with the temporally constrained reconstruction (TCR) algorithm using pork muscle data. Results: The PITCR method provides superior performance compared to the TCR approach with highly undersampled data. The proposed approach is computationally expensive compared to the TCR approach, but this could be overcome by the advantage of reconstructing with fewer measurements. In the case of reconstruction of temperature maps from 16% of fully sampled data, the PITCR approach was 1.57x slower compared to the TCR approach, while the root mean square error using PITCR is 0.784 compared to 2.815 with the TCR scheme. Conclusions: The PITCR approach is able to perform more accurate reconstructions of temperature maps compared to the TCR approach with highly undersampled data in MR guided high intensity focused ultrasound. (C) 2015 American Association of Physicists in Medicine.
Resumo:
We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n-type GaAs at room temperature. A transient voltage of similar to 100 mu V was measured across a Au-Al2O3-GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of similar to 6 T. Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 x 10(15) cm(-3). Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.
Resumo:
The effect of the La3+ and Gd3+ co-doping on the structure, electric and magnetic properties of BiFeO3 (BFO) ceramics are investigated. For the compositions (x=0 and 0 <= y <= 0.15) in the perovskite structured LaxGdyBi1-xFeO3 system, a tiny residual phase of Bi2Fe4O9 is noticed. Such a secondary phase is suppressed with the incorporation of `La' content (x). The magnitude of dielectric constant (epsilon(r) increases progressively by increasing the `La' content from x=0 to 0.15 with a remarkable decrease of dielectric loss. For x=0.15, the system LaxGdyBi1-x(x+y)FeO3 exhibits highest remanent magnetization (M-r) of 0.18 emu/g and coercive magnetic field (H-c) of similar to 1 Tin the presence of external magnetic field of 9 T at 300 K. The origin of enhanced dielectric and magnetic properties of LaxGdyBil (x+y)Fe03 and the role of doping elements, La3+, Gd3+ has been discussed. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
We report an anomalous re-entrant glassy magnetic phase in (l00) oriented ferromagnetic LaMn0.5Co0.5O3 single crystals. The characterization is fortified with conventional magnetometry, like linear as-well-as non-linear ac susceptibility and specific heat. As the sample is cooled below the ferromagnetic transition temperature, it reenters a glassy magnetic phase whose dynamics have little resemblance with the conventional response. The glassy transition shifts to a higher temperature with increasing frequency of the applied ac field. But it does not respond to the dc biasing or memory experiment. Specific heat as well as non-linear ac susceptibility data also do not relate to the conventional glassy response. Unusually low magnetic entropy indicates the lack of long range magnetic ordering. The results demonstrate that the glassy phase in LaMn0.5Co0.5O3 is not due to any of the known conventional origins. We infer that the competing ferromagnetic and antiferromagnetic interaction due to high B-site disorder is responsible for this anomalous re-entrant glassy phase. (C) 2016 AIP Publishing LLC.
Resumo:
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO3 studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at T-N(Fe/Mn) approximate to 295K where a paramagnetic-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, T-SR(Fe/Mn) approximate to 26K where a spin-reorientation transition occurs in the Fe/Mn sublattice and T-N(R) approximate to 2K where Tb-ordering starts to manifest. At 295 K, the magnetic structure of the Fe/Mn sublattice in TbFe0.5Mn0.5O3 belongs to the irreducible representation Gamma(4) (G(x)A(y)F(z) or Pb'n'm). A mixed-domain structure of (Gamma(1) + Gamma(4)) is found at 250K which remains stable down to the spin re-orientation transition at T-SR(Fe/Mn) approximate to 26K. Below 26K and above 250 K, the majority phase (>80%) is that of Gamma(4). Below 10K the high-temperature phase Gamma(4) remains stable till 2K. At 2 K, Tb develops a magnetic moment value of 0.6(2) mu(B)/f.u. and orders long-range in F-z compatible with the Gamma(4) representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe0.5Mn0.5O3 and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-Q region of the neutron diffraction patterns at T < T-SR(Fe/Mn). These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe0.5Mn0.5O3. (C) 2016 AIP Publishing LLC.
Resumo:
We report an anomalous re-entrant glassy magnetic phase in (l00) oriented ferromagnetic LaMn0.5Co0.5O3 single crystals. The characterization is fortified with conventional magnetometry, like linear as-well-as non-linear ac susceptibility and specific heat. As the sample is cooled below the ferromagnetic transition temperature, it reenters a glassy magnetic phase whose dynamics have little resemblance with the conventional response. The glassy transition shifts to a higher temperature with increasing frequency of the applied ac field. But it does not respond to the dc biasing or memory experiment. Specific heat as well as non-linear ac susceptibility data also do not relate to the conventional glassy response. Unusually low magnetic entropy indicates the lack of long range magnetic ordering. The results demonstrate that the glassy phase in LaMn0.5Co0.5O3 is not due to any of the known conventional origins. We infer that the competing ferromagnetic and antiferromagnetic interaction due to high B-site disorder is responsible for this anomalous re-entrant glassy phase. (C) 2016 AIP Publishing LLC.
Resumo:
GdxZn1-xO (x = 0, 0.02, 0.04 and 0.06) nanostructures have been synthesized using sol-gel technique and characterized to understand their structural and magnetic properties. X-ray diffraction (XRD) results show that Gd (0, 2, 4 and 6 %)-doped ZnO nanostructures crystallized in the wurtzite structure having space group C3(v) (P6(3)mc). Photoluminescence and Raman studies of Gd-doped ZnO powder show the formation of singly ionized oxygen vacancies. X-ray absorption spectroscopy reveals that Gd replaces the Zn atoms in the host lattice and maintains the crystal symmetry with slight lattice distortion. Gd L-3-edge spectra reveal charge transfer between Zn and Gd dopant ions. O K-edge spectra also depict the charge transfer through the oxygen bridge (Gd-O-Zn). Weak magnetic ordering is observed in all Gd-doped ZnO samples.
Resumo:
This paper reports the effect of film thickness (50, 200, 400 and 800 nm) on the structural and magnetic properties of amorphous Tb-Dy-Fe-Co alloy thin films. All the films are found to exhibit perpendicular magnetic anisotropy (PMA) irrespective of the film thickness. The PMA is found to decrease with increase in film thickness due to the decrease in the magnetic texture and anisotropy energy. While the coercivity deduced from the out-of-plane magnetization curve increases with increasing film thickness, the in-plane coercivity exhibits weak thickness dependence. The irreversibility point in the thermo-magnetic curves obtained from field-cooled and zero-field-cooled measurements along the out-of-plane direction is found to shift towards higher temperature compared to the measurements in in-plane directions, indicating the presence of strong PMA.
Resumo:
Gadolinium oxide (Gd2O3) nanotubes of micron length and average diameter 100 nm have been synthesized by a controlled template-assisted electrochemical deposition technique. Structure and morphology of the synthesized nanotubes have been well characterized by using microscopy and spectroscopy analyses. HRTEM and XRD analysis revealed the crystalline planes of Gd2O3 nanotubes. Magnetic measurements of the aligned Gd2O3 nanotubes have been performed for both parallel and perpendicular orientations of the magnetic field with respect to the axis of the Gd2O3 nanotube array. Large bifurcation in ZFC-FC over the regime of 2-320 K without any signature of long range magnetic ordering confirms the presence of SPM clusters in Gd2O3 nanotubes. Also, large magnetocaloric effect is observed in the cryogenic temperature regime. No anisotropy is seen at the low temperature region but is found to evolve with temperature and becomes significant 300 K. These nanotubes can be considered as promising candidates for magnetic refrigeration at cryogenic temperature. (C) 2016 Elsevier B.V. All rights reserved.