479 resultados para LOW-METALLICITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an analysis of an organic Rankine cycle (ORC) with dry cooling system aided by an earth-coupled passive cooling system. Several organic fluids were considered as working fluids in the ORC in the temperature range of 125-200 degrees C. An earth-air-heat-exchanger (EMU) is studied for a location in the United States (Las Vegas) and another in India (New Delhi), to pre cool the ambient air before entering an air-cooled condenser (ACC). It was observed that the efficiency of the system improved by 1-3% for the system located in Las Vegas and fluctuations associated with temperature variations of the ambient air were also reduced when the EAHE system was used. A ground-coupled heat pump (GCHP) is also studied for these locations where cooling water is pre cooled in an underground buried pipe before entering a condenser heat exchanger in a closed loop. The area of the buried pipe and the condenser size are calculated per kW of power generation for various working fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Turbine inlet pressures of similar to 300 bar in case of CO2 based cycles call for redesigning the cycle in such a way that the optimum high side pressures are restricted to the discharge pressure limits imposed by currently available commercial compressors (similar to 150 bar) for distributed power generation. This leads to a cycle which is a combination of a transcritical condensing and a subcritical cycle with an intercooler and a bifurcation system in it. Using a realistic thermodynamic model, it is predicted that the cycle with the working fluid as a non-flammable mixture of 48.5 % propane and rest CO2 delivers similar to 37.2 % efficiency at 873 K with a high and a low side pressure of 150 and 26 bar respectively. This is in contrast to the best efficiency of similar to 36.1 % offered by a transcritical condensing cycle with the same working fluid at a high side pressure of similar to 300 bar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of the (La0.8Sr0.2)(0.98)Mn1-xCrxO3 model series (x = 0, 0.05, or 0.1) was measured using soft X-ray synchrotron radiation at room and elevated temperature. O K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra showed that low-level chromium substitution of (La, Sr)MnO3 resulted in lowered hybridisation between O 2p orbitals and M 3d and M 4sp valance orbitals. Mn L-3-edge resonant photoemission spectroscopy measurements indicated lowered Mn 3d-O 2p hybridisation with chromium substitution. Deconvolution of O K-edge NEXAFS spectra took into account the effects of exchange and crystal field splitting and included a novel approach whereby the pre-peak region was described using the nominally filled t(2g) up arrow state. 10% chromium substitution resulted in a 0.17 eV lowering in the energy of the t(2g) up arrow state, which appears to provide an explanation for the 0.15 eV rise in activation energy for the oxygen reduction reaction, while decreased overlap between hybrid O 2p-Mn 3d states was in qualitative agreement with lowered electronic conductivity. An orbital-level understanding of the thermodynamically predicted solid oxide fuel cell cathode poisoning mechanism involving low-level chromium substitution on the B-site of (La, Sr)MnO3 is presented. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2SnS3 thin films were deposited by a facile sot-gel technique followed by annealing. The annealed films were structurally characterized by grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). The crystal structure was found to be tetragonal with crystallite sizes of 2.4-3 nm. Texture coefficient calculations from the GIXRD revealed the preferential orientation of the film along the (112) plane. The morphological investigations of the films were carried out using field emission scanning electron microscopy (FESEM) and the composition using electron dispersive spectroscopy (EDS). The temperature dependent current, voltage characteristics of the Cu2SnS3/AZnO heterostructure were studied. The log I-log V plot exhibited three regions of different slopes showing linear ohmic behavior and non-linear behavior following the power law. The temperature dependent current voltage characteristics revealed the variation in ideality factor and barrier height with temperature. The Richardson constant was calculated and its deviation from the theoretical value revealed the inhomogeneity of the barrier heights. Transport characteristics were modeled using the thermionic emission model. The Gaussian distribution of barrier heights was applied and from the modified Richardson plot the value of the Richardson constant was found to be 47.18 A cm(-2) K-2. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of representing a univariate polynomial f(x) as a sum of powers of low degree polynomials. We prove a lower bound of Omega(root d/t) for writing an explicit univariate degree-d polynomial f(x) as a sum of powers of degree-t polynomials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combined experimental (infrared, Raman and NMR) and theoretical quantum chemical study is performed on the charge-transfer complex hydroxyethylammonium picrate (HEAP). The infrared (IR) spectra for HEAP were recorded at various temperatures, ranging from 16 K to 299 K, and the Raman spectrum was recorded at room temperature. A comparison of the experimental IR and Raman spectra with the corresponding calculated spectra was done, in order to facilitate interpretation of the experimental data. Formation of the HEAP complex is evidenced by the presence of the most prominent characteristic bands of the constituting groups of the charge-transfer complex e.g., NH3+, CO- and NO2]. Vibrational spectroscopic analysis, together with natural bond orbital (NBO) and theoretical charge density analysis in the crystalline phase, was used to shed light on relevant structural details of HEAP resulting from deprotonation of picric acid followed by formation of a hydrogen bond of the N-H center dot center dot center dot OC type between the hydroxyethylammonium cation and the picrate.C-13 and H-1 NMR spectroscopic analysis are also presented for the DMSO-d(6) solution of the compound revealing that in that medium the HEAP crystal dissolves forming the free picrate and hydroxyethylammonium ions. Finally, the electron excitation analysis of HEAP was performed in an attempt to determine the nature of the most important excited states responsible for the NLO properties exhibited by the compound. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoactive metal complexes have emerged as potential candidates in the photodynamic therapy (PDT) of cancer. We present here the synthesis, characterization and visible light-triggered anticancer activity of two novel mixed-ligand oxo-bridged iron(III) complexes, viz., {Fe(L)(acac)}(2)(mu-O)](ClO4)(2) (1) and {Fe (L)(cur)}(2)(mu-O)](ClO4)(2) (2) where L is bis-(2-pyridylmethyl)-benzylamine, acac is acetylacetonate and cur is the monoanion of curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione). The crystal structure of complex 1 (as PF6 salt, 1a) shows distorted octahedral geometry of each iron(III) centre formed by the FeN3O3 core. The 1: 2 electrolytic complexes are stable in solution and retain their oxo-bridged identity in aqueous medium. Complex 2 has a strong absorption band in the visible region and shows promising photocytotoxicity in HeLa and MCF-7 cancer cells in visible light giving respective IC50 values of 3.1 +/- 0.4 lM and 4.9 +/- 0.5 lM while remains non-toxic in the dark (IC50 > 50 lM). The control complex 1 is inactive both in the light and dark. Complex 2 accumulates in cytoplasm of HeLa and MCF-7 cells as evidenced from fluorescence microscopy and triggers apoptotic cell death via light-assisted generation of reactive oxygen species (ROS). Taken together, complex 2 with its promising photocytotoxicity but negligible dark toxicity in cancer cells has significant photochemotherapeutic potential for applications in PDT. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider near-optimal policies for a single user transmitting on a wireless channel which minimize average queue length under average power constraint. The power is consumed in transmission of data only. We consider the case when the power used in transmission is a linear function of the data transmitted. The transmission channel may experience multipath fading. Later, we also extend these results to the multiuser case. We show that our policies can be used in a system with energy harvesting sources at the transmitter. Next we consider data users which require minimum rate guarantees. Finally we consider the system which has both data and real time users. Our policies have low computational complexity, closed form expression for mean delays and require only the mean arrival rate with no queue length information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current state of the art, it remains an open problem to detect damage with partial ultrasonic scan data and with measurements at coarser spatial scale when the location of damage is not known. In the present paper, a recent development of finite element based model reduction scheme in frequency domain that employs master degrees of freedom covering the surface scan region of interests is reported in context of non-contact ultrasonic guided wave based inspection. The surface scan region of interest is grouped into master and slave degrees of freedom. A finite element wise damage factor is derived which represents damage state over distributed areas or sharp condition of inter-element boundaries (for crack). Laser Doppler Vibrometer (LDV) scan data obtained from plate type structure with inaccessible surface line crack are considered along with the developed reduced order damage model to analyze the extent of scan data dimensional reduction. The proposed technique has useful application in problems where non-contact monitoring of complex structural parts are extremely important and at the same time LDV scan has to be done on accessible surfaces only.