648 resultados para 290203 Aerospace Structures
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) (0.85PMN-0.15PT) ferroelectric relaxor thin films have been deposited on La0.5Sr0.5CoO3/(111) Pt/TiO2/SiO2/Si by pulsed laser ablation by varying the oxygen partial pressures from 50 mTorr to 400 mTorr. The X-ray diffraction pattern reveals a pyrochlore free polycrystalline film. The grain morphology of the deposited films was studied using scanning electron microscopy and was found to be affected by oxygen pressure. By employing dynamic contact-electrostatic force microscopy we found that the distribution of polar nanoregions is majorly affected by oxygen pressure. Finally, the electric field induced switching in these films is discussed in terms of domain wall pinning.
Resumo:
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.
Resumo:
The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.
Resumo:
Two new one-dimensional heterometallic complexes, Mn3Na(L)(4)(CH3CO2)(MeOH)(2)]-(ClO4)(2)center dot 3H(2)O (1), Mn3Na(L)(4)(CH3CH2CO2)-(MeOH)(2)](ClO4)(2)center dot 2MeOH center dot H2O (2) LH2 = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn-II and Na-I ions in trigonal-prismatic geometries that are linked to octahedral Mn-IV ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.
Resumo:
In the present work, the ultrasonic strain sensing performance of the large area PVDF thin film subjected to the thermal fatigue is studied. The PVDF thin film is prepared using hot press and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The sensors used in aircrafts for structural health monitoring applications are likely to be subjected to a wide range of temperature fluctuations which may create thermal fatigue in both aircraft structures and in the sensors. Thus, the sensitivity of the PVDF sensors for thermal fatigue needs to be studied for its effective implementation in the structural health monitoring applications. In present work, the fabricated films have been subjected to certain number of thermal cycles which serve as thermal fatigue and are further tested for ultrasonic strain sensitivity at various different frequencies. The PVDF sensor is bonded on the beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end of the beam. Sensitivity of PVDF sensor in terms of voltage is obtained for increasing number of thermal cycles. Sensitivity variation is studied at various different extent of thermal fatigue. The variation of the sensor sensitivity with frequency due to thermal fatigue at different temperatures is also investigated. The present investigation shows an appropriate temperature range for the application of the PVDF sensors in structural health monitoring.
Resumo:
Lamb wave type guided wave propagation in foam core sandwich structures and detectability of damages using spectral analysis method are reported in this paper. An experimental study supported by theoretical evaluation of the guided wave characteristics is presented here that shows the applicability of Lamb wave type guided ultrasonic wave for detection of damage in foam core sandwich structures. Sandwich beam specimens were fabricated with 10 mm thick foam core and 0.3 mm thick aluminum face sheets. Thin piezoelectric patch actuators and sensors are used to excite and sense guided wave. Group velocity dispersion curves and frequency response of sensed signal are obtained experimentally. The nature of damping present in the sandwich panel is monitored by measuring the sensor signal amplitude at various different distances measured from the center of the linear phased array. Delaminations of increasing width are created and detected experimentally by pitch-catch interrogation with guided waves and wavelet transform of the sensed signal. Signal amplitudes are analyzed for various different sizes of damages to differentiate the damage size/severity. A sandwich panel is also fabricated with a planer dimension of 600 mm x 400 mm. Release film delamination is introduced during fabrication. Non-contact Laser Doppler Vibrometer (LDV) is used to scan the panel while exciting with a surface bonded piezoelectric actuator. Presence of damage is confirmed by the reflected wave fringe pattern obtained from the LDV scan. With this approach it is possible to locate and monitor the damages by tracking the wave packets scattered from the damages.
Guided Wave based Damage Detection in a Composite T-joint using 3D Scanning Laser Doppler Vibrometer
Resumo:
Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We report the fabrication of free-standing flexible inorganic/organic hybrid structures by exfoliating ZnO nanostructured films from the flat indium tin oxide (ITO)/silicon/sapphire substrates using poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS). Strong interaction between ZnO and PEDOT: PSS and the thermomechanical response of PEDOT: PSS are the key issues for the exfoliation to prevail. The performance of the free-standing hybrid structures as rectifiers and photodetectors is better as compared to ITO supported hybrid structures. It is also shown that device properties of hybrid structures can be tuned by using different electrode materials. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729550]
Resumo:
Four new three-dimensional Mn2+ ion-containing compounds have been prepared by employing a hydrothermal reaction between Mn(CH3COO)(2)center dot 4H(2)O, sulfodibenzoic acid (H(2)SDBA), imidazole, alkali hydroxide and water at 220 degrees C for 1 day. The compounds have Mn-5 (1-4) clusters connected by SDBA, forming the three-dimensional structure. A time and temperature dependent study on the synthesis mixture revealed the formation of a one-dimensional compound, Mn(SDBA)(H2O)(2), at lower temperatures (T <= 180 degrees C). The stabilization of the fcu related topology in the compounds is noteworthy. Magnetic studies indicate strong anti-ferromagnetic interactions between the Mn2+ ions within the clusters in the temperature range 75-300 K. The rare participation of a sulfonyl group in the bonding is important and can pave way for the design of new structures.
Resumo:
Ionic polymer-metal composites are soft artificial muscle-like bending actuators, which can work efficiently in wet environments such as water. Therefore, there is significant motivation for research on the development and design analysis of ionic polymer-metal composite based biomimetic underwater propulsion systems. Among aquatic animals, fishes are efficient swimmers with advantages such as high maneuverability, high cruising speed, noiseless propulsion, and efficient stabilization. Fish swimming mechanisms provide biomimetic inspiration for underwater propulsor design. Fish locomotion can be broadly classified into body and/or caudal fin propulsion and median and/or paired pectoral fin propulsion. In this article, the paired pectoral fin-based oscillatory propulsion using ionic polymer-metal composite for aquatic propulsor applications is studied. Beam theory and the concept of hydrodynamic function are used to describe the interaction between the beam and water. Furthermore, a quasi-steady blade element model that accounts for unsteady phenomena such as added mass effects, dynamic stall, and the cumulative Wagner effect is used to obtain hydrodynamic performance of the ionic polymer-metal composite propulsor. Dynamic characteristics of ionic polymer-metal composite fin are analyzed using numerical simulations. It is shown that the use of optimization methods can lead to significant improvement in performance of the ionic polymer-metal composite fin.
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5�10 6m -1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from -12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results. © 2012 Elsevier Inc.
Resumo:
A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The nonlinear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.
Resumo:
Abstract: Background: Most signalling and regulatory proteins participate in transient protein-protein interactions during biological processes. They usually serve as key regulators of various cellular processes and are often stable in both protein-bound and unbound forms. Availability of high-resolution structures of their unbound and bound forms provides an opportunity to understand the molecular mechanisms involved. In this work, we have addressed the question "What is the nature, extent, location and functional significance of structural changes which are associated with formation of protein-protein complexes?" Results: A database of 76 non-redundant sets of high resolution 3-D structures of protein-protein complexes, representing diverse functions, and corresponding unbound forms, has been used in this analysis. Structural changes associated with protein-protein complexation have been investigated using structural measures and Protein Blocks description. Our study highlights that significant structural rearrangement occurs on binding at the interface as well as at regions away from the interface to form a highly specific, stable and functional complex. Notably, predominantly unaltered interfaces interact mainly with interfaces undergoing substantial structural alterations, revealing the presence of at least one structural regulatory component in every complex. Interestingly, about one-half of the number of complexes, comprising largely of signalling proteins, show substantial localized structural change at surfaces away from the interface. Normal mode analysis and available information on functions on some of these complexes suggests that many of these changes are allosteric. This change is largely manifest in the proteins whose interfaces are altered upon binding, implicating structural change as the possible trigger of allosteric effect. Although large-scale studies of allostery induced by small-molecule effectors are available in literature, this is, to our knowledge, the first study indicating the prevalence of allostery induced by protein effectors. Conclusions: The enrichment of allosteric sites in signalling proteins, whose mutations commonly lead to diseases such as cancer, provides support for the usage of allosteric modulators in combating these diseases.