513 resultados para Topoisomerase-ii


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent years have seen a tremendous increase in the interest for constructing hollowed-out molecular frameworks, for their potential uses. Metal-ligand coordination-driven self-assembly has provided multitudes of opportunities in the formation of molecular architectures of desired shapes and sizes, with the help of the information already coded in the components. This article summarizes the recent developments in the construction of multicomponent molecular cages through this process, with a focus on the decreasing relevance of templates, and use of these systems in catalysis/host-guest chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four binuclear copper (II) complexes Cu(oxpn)Cu(B)](2+) (2-5) bridged by N, N'-bis3-(methylamino) propyl] oxamide (oxpn), where, B is N, N-donor heterocyclic bases (viz. 2,2'-bipyridine (bpy, 2), 1,10-phenathroline (phen, 3), dipyrido3,2-d:2',3'-f]quinoxaline (dpq, 4) and dipyrido3,2-a:2',3'-c]phenazine (dppz, 5) are synthesized, characterized by different spectroscopic and single crystal X-ray data technique. The phen (3) and dpq (4) complexes were structurally characterized by X-ray data analysis. Their DNA binding, oxidative cleavage and antibactirial activities were studied. The dpq (4) and dppz (5) complexes are avid binders to the Calf thymus DNA (CT-DNA). The phen (3), dpq (4) and dppz (5) complexes show efficient oxidative cleavage of supercoiled DNA (SC DNA) through hydroxyl radical ((OH)-O-center dot) pathway in the presence of Mercaptopropionic acid (MPA). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mono- and trinuclear copper(II) complexes with 2-1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL) have been synthesized and structurally characterized. The mononuclear complex Cu(L)(H2O)(ONO2)] (1) crystallizes in monoclinic space group P2(1) /n with a square pyramidal Cu(II) center coordinated by the tridentate Schiff base (L) and a water ligand in the equatorial plane and an oxygen atom from nitrate in the axial position. The trinuclear complex (CuL)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (2) crystallizes in hexagonal space group P6(3); all three copper atoms are five-coordinate with square pyramidal geometries. The interactions of these complexes with calf-thymus DNA have been investigated using absorption spectrophotometry. The mononuclear complex binds more strongly than the trinuclear complex. The DNA cleavage activity of these complexes has been studied on double-stranded pBR 322 plasmid DNA by gel electrophoresis experiments in the absence and in the presence of added oxidant (H2O2). The trinuclear complex cleaves DNA more efficiently than the mononuclear complex in the presence of H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis and characterization of cis, trans-RuH(eta(2)-H-2)(PPh3)(2)(N-N)]OTf] (N-N = 2,2'-bipyridyl (bpy) 1a, 2,2'-bipyrimidine (bpm) 2a; OTf = trifluoromethane sulfonate (CF3SO3)) complexes are reported. The cis-H-2/hydride ligands are involved in H-atom site exchange between the two moieties. This dynamics was investigated by variable temperature NMR spectral studies based on which the mechanism of the exchange process was deduced. The Delta G(#) for the exchange of H-atoms between the eta(2)-H-2 and hydride ligands was determined to be around 8 and 13 kJ mol(-1), respectively, for 1a and 2a. The H-H distances (d(HH), A) in complexes 1a and 2a have been calculated from the T-1(minimum) and (1)J(H, D) and are found to be 1.07 A (slow) and 0.95 A for 1a and 1.04 A (slow) and 0.94 A for 2a, respectively. The molecular structure of 1a was determined by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA gyrase is a type II topoisomerase that catalyzes the introduction of negative supercoils in the genomes of eubacteria. Fluoroquinolones (FQs), successful as drugs clinically, target the enzyme to trap the gyrase-DNA complex, leading to the accumulation of double-strand breaks in the genome. Mycobacteria are less susceptible to commonly used FQs. However, an 8-methoxy-substituted FQ, moxifloxacin (MFX), is a potent antimycobacterial, and a higher susceptibility of mycobacterial gyrase to MFX has been demonstrated. Although several models explain the mechanism of FQ action and gyrase-DNA-FQ interaction, the basis for the differential susceptibility of mycobacterial gyrase to various FQs is not understood. We have addressed the basis of the differential susceptibility of the gyrase and revisited the mode of action of FQs. We demonstrate that FQs bind both Escherichia coli and Mycobacterium tuberculosis gyrases in the absence of DNA and that the addition of DNA enhances the drug binding. The FQs bind primarily to the GyrA subunit of mycobacterial gyrase, while in E. coli holoenzyme is the target. The binding of MFX to GyrA of M. tuberculosis correlates with its effectiveness as a better inhibitor of the enzyme and its efficacy in cell killing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topoisomerases are an important class of enzymes for regulating the DNA transaction processes. Mycobacterium tuberculosis (Mtb) is one of the most formidable pathogens also posing serious challenges for therapeutic interventions. The organism contains only one type IA topoisomerase (Rv3646c), offering an opportunity to test its potential as a candidate drug target. To validate the essentiality of M.tuberculosis topoisomerase I (TopoI(Mt)) for bacterial growth and survival, we have generated a conditionally regulated strain of topoI in Mtb. The conditional knockdown mutant exhibited delayed growth on agar plate. In liquid culture, the growth was drastically impaired when TopoI expression was suppressed. Additionally, novobiocin and isoniazid showed enhanced inhibitory potential against the conditional mutant. Analysis of the nucleoid revealed its altered architecture upon TopoI depletion. These studies establish the essentiality of TopoI for the M.tuberculosis growth and open up new avenues for targeting the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new dinuclear cadmium(II) complex, Cd(L)(NCS)](2) (1) has been synthesized using a potentially tetradentate Schiff base ligand HL, 2-((E)-(2-(diethylamino) ethylimino) methyl)-6-methoxyphenol, obtained by the condensation of 2-diethylaminoethylamine and o-vanillin, and characterized by different physicochemical techniques. Crystal structure of the title complex was unambiguously established by single crystal X-ray diffraction which reveals that metal centers are connected by bridging phenolato and chelating methoxy oxygen atoms of the coordinating Schiff bases and embedded in severely distorted octahedral geometries. Fluorescence properties of the ligand and its complex, studied at room temperature indicate that later may serve as strong fluorescent

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of fluctuations in habitat temperature (18-30 degrees) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrate are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40 degrees C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR ( >= 3) and P/O ratio (1.4-2.7) at the temperature range of 15-25 degrees C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18 degrees C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40 degrees C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondria respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organometallic complex of (eta(6)-cymene)Ru(II)Br with 6-thioguanine (6-TG) shows better photostability than the biologically active 6-thioguanine which is used as an immunosuppressant and as an anticancer agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coil gyrase, a type HA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holo enzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ferrocene-conjugated copper(II) complexes Cu(Fc-aa)(aip)](ClO4) (1-3) and (Cu(Fc-aa)(pyip)](ClO4) (4-6) of L-amino acid reduced Schiff bases (Fc-aa), 2-(9-anthryl)-1H-imidazo4,5-f]1,10]phenanthroline (aip) and 2-(1-pyrenyl)-1H-imidazo4,5-f] 1,10]phenanthroline (pyip), where Fc-aa is ferrocenylmethyl-L-tyrosine (Fc-Tyr in 1, 4), ferrocenylmethyl-L-tryptophan (Fc-Trp in 2, 5) and ferrocenylmethyl-L-methionine (Fc-Met in 3, 6), were prepared and characterized, and their photocytotoxicity was studied (Fc = ferrocenyl moiety). Phenyl analogues, viz. (Cu(Ph-Met)(aip)](ClO4) (7) and (Cu(Ph-Met)(pyip)](ClO4) (8), were prepared and used as control compounds. The bis-imidazophenanthroline copper(II) complexes, viz. (Cu(aip)(2)(NO3)](NO3) (9) and Cu(pyip)(2)(NO3)](NO3) (10), were also prepared and used as controls. Complexes 1-6 having a redox inactive cooper(II) center showed the Fc(+)-Fc redox couple at similar to 0.5 V vs. SCE in DMF-0.1 mol (Bu4N)-N-n](ClO4). The copper(II)-based d-d band was observed near 600 nm in DMF-Tris-HCl buffer (1 :1 v/v). The ferrocenyl complexes showed low dark toxicity, but remarkably high photocytotoxicity in human cervical HeLa and human breast adenocarcinoma MCF-7 cancer cells giving an excellent photo-dynamic effect while their phenyl analogues were inactive. The photo-exposure caused significant morphological changes in the cancer cells when compared to the non-irradiated ones. The photophysical processes were rationalized from the theoretical studies. Fluorescence microscopic images showed 3 and 6 localizing predominantly in the endoplasmic reticulum (ER) of the cancer cells, thus minimizing any undesirable effects involving nuclear DNA.