490 resultados para Couette flow
Resumo:
In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .
Resumo:
The flow characteristics of a near eutectic Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of the flow behavior on heat treatment is studied by testing the alloy in non-heat treated (NHT) and heat treated (HT) conditions. The heat treatment has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. It is observed that the strength of the alloy increases with increase in strain rate and it increases more rapidly above the strain rate of 10(-1) s(-1) in HT condition at all the temperatures, and at 100 degrees C and 200 degrees C in NHT condition. The thermally dependent process taking place in the HT matrix is responsible for the observed greater SRS in HT condition. The alloy in HT condition exhibits a larger work hardening rate than in NHT condition during initial stages of straining. However, the hardening rate decreases more sharply at higher strains in HT condition due to precipitate shearing and higher rate of Si particle fracture. Thermal hardening is observed at 200 degrees C in NHT condition due to precipitate formation, which results in increased SRS at higher temperatures. Thermal softening is observed in HT condition at 200 C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by a finite element method support the experimentally observed particle and matrix fracture behavior. A negative SRS and serrated flow are observed in the lower strain rate regime (3 x 10(-4)-10(-2) s(-1)) at RT and 100 degrees C, in both NHT and HT conditions. The observations show that both dynamic strain aging (DSA) and precipitate shearing play a role in serrated flow. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.
Resumo:
A linear stability analysis is carried out for the flow through a tube with a soft wall in order to resolve the discrepancy of a factor of 10 for the transition Reynolds number between theoretical predictions in a cylindrical tube and the experiments of Verma and Kumaran J. Fluid Mech. 705, 322 (2012)]. Here the effect of tube deformation (due to the applied pressure difference) on the mean velocity profile and pressure gradient is incorporated in the stability analysis. The tube geometry and dimensions are reconstructed from experimental images, where it is found that there is an expansion and then a contraction of the tube in the streamwise direction. The mean velocity profiles at different downstream locations and the pressure gradient, determined using computational fluid dynamics, are found to be substantially modified by the tube deformation. The velocity profiles are then used in a linear stability analysis, where the growth rates of perturbations are calculated for the flow through a tube with the wall modeled as a neo-Hookean elastic solid. The linear stability analysis is carried out for the mean velocity profiles at different downstream locations using the parallel flow approximation. The analysis indicates that the flow first becomes unstable in the downstream converging section of the tube where the flow profile is more pluglike when compared to the parabolic flow in a cylindrical tube. The flow is stable in the upstream diverging section where the deformation is maximum. The prediction for the transition Reynolds number is in good agreement with experiments, indicating that the downstream tube convergence and the consequent modification in the mean velocity profile and pressure gradient could reduce the transition Reynolds number by an order of magnitude.
Resumo:
Many boundary value problems occur in a natural way while studying fluid flow problems in a channel. The solutions of two such boundary value problems are obtained and analysed in the context of flow problems involving three layers of fluids of different constant densities in a channel, associated with an impermeable bottom that has a small undulation. The top surface of the channel is either bounded by a rigid lid or free to the atmosphere. The fluid in each layer is assumed to be inviscid and incompressible, and the flow is irrotational and two-dimensional. Only waves that are stationary with respect to the bottom profile are considered in this paper. The effect of surface tension is neglected. In the process of obtaining solutions for both the problems, regular perturbation analysis along with a Fourier transform technique is employed to derive the first-order corrections of some important physical quantities. Two types of bottom topography, such as concave and convex, are considered to derive the profiles of the interfaces. We observe that the profiles are oscillatory in nature, representing waves of variable amplitude with distinct wave numbers propagating downstream and with no wave upstream. The observations are presented in tabular and graphical forms.
Resumo:
We address the problem of passive eavesdroppers in multi-hop wireless networks using the technique of friendly jamming. The network is assumed to employ Decode and Forward (DF) relaying. Assuming the availability of perfect channel state information (CSI) of legitimate nodes and eavesdroppers, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met while minimizing the overall transmitted power. We propose activation sets (AS-es) for scheduling, and formulate an optimization problem for PA. Several methods for finding AS-es are discussed and compared. We present an approximate linear program for the original nonlinear, non-convex PA optimization problem, and argue that under certain conditions, both the formulations produce identical results. In the absence of eavesdroppers' CSI, we utilize the notion of Vulnerability Region (VR), and formulate an optimization problem with the objective of minimizing the VR. Our results show that the proposed solution can achieve power-efficient operation while defeating eavesdroppers and achieving desired source-destination throughputs simultaneously. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this work, we report a system-level integration of portable microscopy and microfluidics for the realization of optofluidic imaging flow analyzer with a throughput of 450 cells/s. With the use of a cellphone augmented with off-the-shelf optical components and custom designed microfluidics, we demonstrate a portable optofluidic imaging flow analyzer. A multiple microfluidic channel geometry was employed to demonstrate the enhancement of throughput in the context of low frame-rate imaging systems. Using the cell-phone based digital imaging flow analyzer, we have imaged yeast cells present in a suspension. By digitally processing the recorded videos of the flow stream on the cellphone, we demonstrated an automated cell viability assessment of the yeast cell population. In addition, we also demonstrate the suitability of the system for blood cell counting. (C) 2015 AIP Publishing LLC.
Resumo:
Precise information on streamflows is of major importance for planning and monitoring of water resources schemes related to hydro power, water supply, irrigation, flood control, and for maintaining ecosystem. Engineers encounter challenges when streamflow data are either unavailable or inadequate at target locations. To address these challenges, there have been efforts to develop methodologies that facilitate prediction of streamflow at ungauged sites. Conventionally, time intensive and data exhaustive rainfall-runoff models are used to arrive at streamflow at ungauged sites. Most recent studies show improved methods based on regionalization using Flow Duration Curves (FDCs). A FDC is a graphical representation of streamflow variability, which is a plot between streamflow values and their corresponding exceedance probabilities that are determined using a plotting position formula. It provides information on the percentage of time any specified magnitude of streamflow is equaled or exceeded. The present study assesses the effectiveness of two methods to predict streamflow at ungauged sites by application to catchments in Mahanadi river basin, India. The methods considered are (i) Regional flow duration curve method, and (ii) Area Ratio method. The first method involves (a) the development of regression relationships between percentile flows and attributes of catchments in the study area, (b) use of the relationships to construct regional FDC for the ungauged site, and (c) use of a spatial interpolation technique to decode information in FDC to construct streamflow time series for the ungauged site. Area ratio method is conventionally used to transfer streamflow related information from gauged sites to ungauged sites. Attributes that have been considered for the analysis include variables representing hydrology, climatology, topography, land-use/land- cover and soil properties corresponding to catchments in the study area. Effectiveness of the presented methods is assessed using jack knife cross-validation. Conclusions based on the study are presented and discussed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This work deals with the homogenization of an initial- and boundary-value problem for the doubly-nonlinear system D(t)w - del.(z) over right arrow = g(x, t, x/epsilon) (0.1) w is an element of alpha(u, x/epsilon) (0.2) (z) over right arrow is an element of (gamma) over right arrow (del u, x/epsilon) (0.3) Here epsilon is a positive parameter; alpha and (gamma) over right arrow are maximal monotone with respect to the first variable and periodic with respect to the second one. The inclusions (0.2) and (0.3) are here formulated as null-minimization principles, via the theory of Fitzpatrick MR 1009594]. As epsilon -> 0, a two-scale formulation is derived via Nguetseng's notion of two-scale convergence, and a (single-scale) homogenized problem is then retrieved. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A new successive displacement type load flow method is developed in this paper. This algorithm differs from the conventional Y-Bus based Gauss Seidel load flow in that the voltages at each bus is updated in every iteration based on the exact solution of the power balance equation at that node instead of an approximate solution used by the Gauss Seidel method. It turns out that this modified implementation translates into only a marginal improvement in convergence behaviour for obtaining load flow solutions of interconnected systems. However it is demonstrated that the new approach can be adapted with some additional refinements in order to develop an effective load flow solution technique for radial systems. Numerical results considering a number of systems-both interconnected and radial, are provided to validate the proposed approach.
Resumo:
We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.
Resumo:
We perform numerical experiments to study the shear dynamo problem where we look for the growth of a large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit where the fluid Reynolds number (Re) is below unity while the magnetic Reynolds number (Rm) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low Re is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus attention on this analytically more tractable limit of Re < 1 compared to the more formidable limit of Re > 1. We also perform simulations in the regimes where (i) both (Re, Rm) < 1, and (ii) Re > 1 and Rm < 1, and compute all of the components of the turbulent transport coefficients (alpha(ij) and alpha(ij)) using the test-field method. A reasonably good agreement is observed between our results and the results of earlier analytical works in similar parameter regimes.
Resumo:
Microfluidic/optofluidic microscopy is a versatile modality for imaging and analyzing properties of cells/particles while they are in flow. In this paper, we demonstrate the integration of fused silica microfluidics fabricated using femtosecond laser machining into optofluidic imaging systems. By using glass for the sample stage of our microscope, we have exploited its superior optical quality for imaging and bio-compatibility. By integrating these glass microfluidic devices into a custom-built bright field microscope, we have been able to image red blood cells in flow with high-throughputs and good fidelity. In addition, we also demonstrate imaging as well as detection of fluorescent beads with these microfluidic devices.
Resumo:
This note is a study of nonnegativity conditions on curvature preserved by the Ricci flow. We focus on a specific class of curvature conditions which we call non-coercive: These are the conditions for which nonnegative curvature and vanishing scalar curvature does not imply flatness. We show, in dimensions greater than 4, that if a Ricci flow invariant nonnegativity condition is satisfied by all Einstein curvature operators with nonnegative scalar curvature, then this condition is just the nonnegativity of scalar curvature. As a corollary, we obtain that a Ricci flow invariant curvature condition, which is stronger than a nonnegative scalar curvature, cannot be strictly satisfied by curvature operators (other than multiples of the identity) of compact Einstein symmetric spaces. We also investigate conditions which are satisfied by all conformally flat manifolds with nonnegative scalar curvature.