552 resultados para Carbon doping
Resumo:
Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.
Resumo:
A new general route for the synthesis of novel beta-aryl-beta-(methylthio)acroleins, a class of stable potential 1,3-dielectrophilic synthons, has been reported. The overall protocol involves treatment of either beta-chloroacroleins or their precursor iminium salts (generated in situ from the corresponding active methylene ketones under Vilsmeier-Haack reaction conditions) with S,S-dimethyldithiocarbonates (DDC)/aqueous KOH in either a one-pot or two-step process. The dimethyldithiocarbonate (DDC)/30% aqueous KOH has been shown to be an excellent source of methylthiolate anion. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The chemical sensing behaviour of the carbon nano-tube and graphene-based sensors for detecting various chemical analytes is presented in this article. A focus on detection mechanisms has been provided to assess their relative potential under different environmental conditions. The performance of these two carbon allotropes is compared based on their sensitivity towards various types of electron donating and accepting molecules. Although these carbon materials still have to meet crucial challenges in fabrication and optimization, continued progress in this field may lead to a sensor with superior sensitivity for a wide range of applications.
Resumo:
A new NMR experiment that exploits the advantages of proton double quantum (DQ) NMR through a proton DQ-carbon single quantum (SQ) correlation experiment in the solid state is proposed. Analogous to the previously proposed 2D H-1 (DQ)-C-13 refocused INEPT experiment (Webber et al., 2010), the correlation between H-1 and C-13 is achieved through scalar coupling evolution, while the double quantum coherence among protons is generated through dipolar couplings. However, the new experiment relies on C-13 transverse coherence for scalar transfer. The new experiment dubbed MAS-J-H-1 (DQ)-C-13-HMQC, is particularly suited for unlabeled molecules and can provide higher sensitivity than its INEPT counterpart. The experiment is applied to four different samples. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.
Resumo:
We have studied the influence of Al doping on the microstructural, optical, and electrical properties of spray-deposited WO3 thin films. XRD analyses confirm that all the films are of polycrystalline WO3 in nature, possessing monoclinic structure. EDX profiles of the Al-doped films show aluminum peaks implying incorporation of Al ions into WO3 lattice. On Al doping, the average crystallite size decreases due to increase in the density of nucleation centers at the time of film growth. The observed variation in the lattice parameter values on Al doping is attributed to the incorporation of Al ions into WO3 lattice. Enhancement in the direct optical band gap compared to the undoped film has been observed on Al doping due to decrease in the width of allowed energy states near the conduction band edge. The refractive indices of the films follow the Cauchy relation of normal dispersion. Electrical resistivity compared to the undoped film has been found to increase on Al doping.
Resumo:
A simple and scalable method of decorating 3D-carbon nanotube (CNT) forest with metal particles has been developed. The results observed in aluminum (AI) decorated CNTs and copper (Cu) decorated CNTs on silicon (Si) and Inconel are compared with undecorated samples. A significant improvement in the field emission characteristics of the cold cathode was observed with ultralow turn on voltage (E-to similar to 0.1 V/mu m) due to decoration of CNTs with metal nanoparticles. Contact resistance between the CNTs and the substrate has also been reduced to a large extent, allowing us to get stable emission for longer duration without any current degradation, thereby providing a possibility of their use in vacuum microelectronic devices.
Resumo:
A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.
Resumo:
Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.
Resumo:
The effects of radiative coupling between scattering and absorbing aerosols, in an external mixture, on the aerosol radiative forcing (ARF) due to black carbon (BC), its sensitivity to the composite aerosol loading and composition, and surface reflectance are investigated using radiative transfer model simulations. The ARF due to BC is found to depend significantly on the optical properties of the `neighboring' (non-BC) aerosol species. The scattering due to these species significantly increases the top of the atmospheric warming due to black carbon aerosols, and significant changes in the radiative forcing efficiency of BC. This is especially significant over dark surfaces (such as oceans), despite the ARF due to BC being higher over snow and land-surfaces. The spatial heterogeneity of this effect (coupling or multiple scattering by neighboring aerosol species) imposes large uncertainty in the estimation ARF due to BC aerosols, especially over the oceans. (C) 2014 Elsevier Ltd. All rights reserved.
VIBRATIONAL CHARACTERISTICS OF ZIGZAG, ARMCHAIR AND CHIRAL CANTILEVER SINGLE-WALLED CARBON NANOTUBES
Resumo:
Finite element analysis has been performed to study vibrational characteristics of cantilever single walled carbon nanotubes. Finite element models are generated by specifying the C-C bond rigidities, which are estimated by equating energies from molecular mechanics and continuum mechanics. Bending, torsion, and axial modes are identified based on effective mass for armchair, zigzag and chiral cantilever single walled carbon nanotubes, whose Young's modulus is evaluated from the bending frequency. Empirical relations are provided for frequencies of bending, torsion, and axial modes.
Resumo:
High-level ab initio calculations have been used to study the interactions between the CH3 group of CH3X (X = F, Cl, Br, CN) molecules and pi-electrons. These interactions are important because of the abundance of both the CH3 groups and pi-electrons in biological systems. Complexes between C2H4/C2H2 and CH3X molecules have been used as model systems. Various theoretical methods such as atoms in molecules theory, reduced density gradient analysis, and natural bond orbital analysis have been used to discern these interactions. These analyses show that the interaction of the p-electrons with the CH3X molecules leads to the formation of X-C...p carbon bonds. Similar complexes with other tetrel molecules, SiH3X and GeH3X, have also been considered.
Resumo:
We report a one-pot hydrothermal synthesis of nitrogen doped reduced graphene oxide (N-rGO) and Ag nanoparticle decorated N-rGO hybrid nanostructures from graphene oxide (GO), metal ions and hexamethylenetetramine (HMT). HMT not only reduces GO and metal ions simultaneously but also acts as the source for the nitrogen (N) dopant. We show that the N-rGO can be used as a metal-free surface enhanced Raman spectroscopy (SERS) substrate, while the Ag nano-particles decorated N-rGO can be used as an effective SERS substrate as well as a template for decorating various other nanostructures on N-rGO.
Resumo:
Development of microporous adsorbents for separation and sequestration of carbon dioxide from flue gas streams is an area of active research. In this study, we assess the influence of specific functional groups on the adsorption selectivity of CO2/N-2 mixtures through Grand Canonical Monte Carlo (GCMC) simulations. Our model system consists of a bilayer graphene nanoribbon that has been edge functionalized with OH, NH2, NO2, CH3 and COOH. Ab initio Moller-Plesset (MP2) calculations with functionalized benzenes are used to obtain binding energies and optimized geometries for CO2 and N-2. This information is used to validate the choice classical forcefields in GCMC simulations. In addition to simulations of adsorption from binary mixtures of CO2 and N-2, the ideal adsorbed solution theory (IAST) is used to predict mixture isotherms. Our study reveals that functionalization always leads to an increase in the adsorption of both CO2 and N-2 with the highest for COOH. However, significant enhancement in the selectivity for CO2 is only seen with COOH functionalized nanoribbons. The COOH functionalization gives a 28% increase in selectivity compared to H terminated nanoribbons, whereas the improvement in the selectivity for other functional groups are much Enure modest. Our study suggests that specific functionalization with COOH groups can provide a material's design strategy to improve CO2 selectivity in microporous adsorbents. Synthesis of graphene nanoplatelets with edge functionalized COOH, which has the potential for large scale production, has recently been reported (Jeon el, al., 2012). (C) 2014 Elsevier Ltd. All rights reserved,
Resumo:
The solubilities of butyl stearate and butyl laurate were determined in the temperature range of 308 K to 323 K and 313 K to 328 K, respectively, at pressures of 10 MPa to 16 MPa. The solubility of butyl laurate was higher than that of butyl stearate by almost an order in magnitude. Retrograde behavior was observed throughout the investigated pressure range. Semiempirical models such as Mendez-Teja, Chrastil, and other density-based models were used to correlate the experimental data of our work as well as several other liquid solutes.