498 resultados para Biopolymeric carbon, carbon equivalents


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study evaluates the synthesis by solvo-thermal method and electrocatalytic activity of nickel nano-particles encapsulated in hollow carbon sphere, in hydrogen and oxygen evolution reaction in PEM water electrolyzer. The XRD patterns have ascertained the formation of nickel metal with different planes in face centered cubic (fcc) and hexagonal closed pack (hcp) form. SEM and TEM images have confirmed the nickel nano-particles with diameter of 10-50 nm inside the 0.2 mu m sized hollow carbon spheres. The BET surface area values gradually decreased with greater encapsulation of nickel; although the electrochemical active surface area (ECSA) values have been calculated as quite higher. It confirms the well dispersion of nickel in the materials and induces their electrocatalytic performance through the active surface sites. The cyclic voltammetric studies have evaluated hydrogen desorption peaks as five times more intense in nickel encapsulated materials, in comparison to the pure hollow carbon spheres. The anodic peak current density value has reached the highest level of 1.9 A cm(-2) for HCSNi10, which gradually decreases with lesser amount of nickel in the electrocatalysts. These electrocatalysts have been proved electrochemically stable during their usage for 48 h long duration under potentiostatic condition. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of high molecular weight esters such as bis (2-ethylhexyl) sebacate is of significance for its use as a lubricant. This ester is synthesized by the transesterification of dimethyl sebacate with 2-ethylhexanol. Therefore, the solubilities of bis (2-ethylhexyl) sebacate and dimethyl sebacate were determined at 308-328 K at pressures of 10-18 MPa in supercritical carbon dioxide. The solubility of dimethyl sebacate was always higher than bis (2-ethylhexyl) sebacate at a given temperature and pressure. The Mendez-Teja model was used to verify the self-consistency of data. Further, a new semi-empirical model with three parameters was developed using the solution theory coupled with Wilson activity coefficient. This model was used to correlate the experimental data of this work and solubilities of many high molecular weight esters reported in the literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA) are completely miscible below 50 wt % PVDF in the blends. In this work, an attempt was made to understand the fragility/cooperativity relation in glass-forming and crystalline blends of PVDF/PMMA and in the presence of a heteronucleating agent, multiwall carbon nanotubes (CNTs). Hence, three representative blends were chosen: a completely amorphous (10/90 by wt, PVDF/PMMA), on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA), and crystalline (60/40 by wt, PVDF/PMMA) blends. The intermolecular cooperativity/coupling, fragility, and configurational entropy near the glass transition temperature (T-g) were studied using differential scanning calorimetry (DSC) and broadband dielectric relaxation spectroscopy (DRS). It was observed that the blends with higher concentration of PMMA were more fragile (fragility index m = 141) and those with higher concentration of PVDF were more strong (m = 78). Interestingly, the coupling was less in the glass-forming blends (10/90 by wt, PVDF/PMMA) than the crystalline blends as manifested from DRS. This observation was also supported by DSC measurements which reflected that the cooperative rearranging region (CRR) existed over a smaller length scales in fragile blends as compared to strong blends, possibly due to restricted amorphous mobility. This effect was more prominent in the presence of CNTs, in particular for 50/50 (by wt) and 60/40 (by wt) PVDF/PMMA blends. Further, the configurational entropy, as manifested from DRS, decreased significantly in the strong blends in striking contrast to the fragile blends, supported by DSC, which manifested in an increase in the volume of cooperativity in the strong blends. The higher coupling in the crystalline blends can be attributed to good packing of the amorphous regions. While this is understood for crystalline blends (60/40 by wt, PVDF/PMMA), it is envisaged that enhanced dynamic heterogeneity is accountable for increased coupling in the case of blends which are on the verge of amorphous miscibility (50/50 by wt, PVDF/PMMA). The latter is also supported by broad relaxations near the T-g in DRS. Interestingly, the intermolecular coupling in the blends in the presence of CNTs has reduced, though the potential energy barrier hindering the rearrangement of CRR is lower than the blends without CNTs. In addition, the amorphous packing is not as effective as the blends without CNTs. This is manifested from reduced volume of cooperativity in particular, for 50/50 (by wt) and 60/40 (by wt) blends.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current paper reports synthesis of chemical free graphene by unzipping of the carbon nanotubes (CNTs) using high strain rate deformation at 150K. A specially designed cryomill operating at 150 K was used for the experiments. The mechanism of unzipping was further explored using molecular dynamics (MD) simulations. Both experimental and simulation results reveal two modes of unzipping through radial and shear loading. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40 years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2 degrees C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The challenge in the electrosynthesis of fuels from CO2 is to achieve durable and active performance with cost-effective catalysts. Here, we report that carbon nanotubes (CNTs), doped with nitrogen to form resident electron-rich defects, can act as highly efficient and, more importantly, stable catalysts for the conversion of CO2 to CO. The unprecedented overpotential (-0.18 V) and selectivity (80%) observed on nitrogen-doped CNTs (NCNTs) are attributed to their unique features to facilitate the reaction, including (i) high electrical conductivity, (ii) preferable catalytic sites (pyridinic N defects), and (iii) low free energy for CO2 activation and high barrier for hydrogen evolution. Indeed, DFT calculations show a low free energy barrier for the potential-limiting step to form key intermediate COOH as well as strong binding energy of adsorbed CON and weak binding energy for the adsorbed CO. The highest selective site toward CO production is pyridinic N, and the NCNT-based electrodes exhibit no degradation over 10 h of continuous operation, suggesting the structural stability of the electrode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A simple yet remarkable, electrochemically activated carbon paste electrode (EACPE) was prepared by successive potential cycling of carbon paste in a 0.1 M NaOH solution and was effectively used for the simultaneous determination of catecholamines such as dopamine (DA), epinephrine (E) and Norepinephrine (NE) in presence of uric acid (UA) and ascorbic acid (AA). Taking DA as the ideal catecholamine, the electrochemical behaviors of DA, UA and AA such as scan rate and pH variation was studied by cyclic voltammetry (CV) in phosphate buffer solution (PBS, pH 7.1). This electrochemical sensor exhibited strong electrocatalytic activity towards the oxidation of a mixture of catecholamines, UA and AA with apparent reduction of overpotentials. Crider optimum conditions, limit of detection (S/N = 3) of DA, E, NE, UA and AA was found to be 0.08, 0.08, 0.07, 0.1 and 6.0 mu M, respectively by differential pulse voltammetry (DPV). The analytical performance of this modified electrode as a biosensor was also demonstrated for the determination of DA, UA and AA in dopamine injection, human urine and vitamin C tablets, respectively, in presence of other interfering substances. (C) 2015 The Electrochemical Society. All-rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A unique approach was adopted to drive the multiwall carbon nanotubes (MWNTs) to the interface of immiscible PVDF-ABS blends by wrapping the nanotubes with a mutually miscible homopolymer (PMMA). A tailor made interface with an improved stress transfer was achieved in the blends with PMMA wrapped MWNTs. This manifested in an impressive 108% increment in the tensile strength and 48% increment in the Young's modulus with 3 wt% PMMA wrapped MWNTs in striking contrast to the neat blends. As the PMMA wrapped MWNTs localized at the interface of PVDF-ABS blends, the electrical conductivity could be tuned with respect to only MWNTs, which were selectively localized in the PVDF phase, driven by thermodynamics. The electromagnetic shielding properties were assessed using a vector network analyser in a broad range of frequency, X-band (8-12 GHz) and Ku-band (12-18 GHz). Interestingly, enhanced EM shielding was achieved by this unique approach. The blends with only MWNTs shielded the EM waves mostly by reflection however, the blends with PMMA wrapped MWNTs (3 wt%) shielded mostly by absorption (62%). This study opens new avenues in designing materials, which show simultaneous improvement in mechanical, electrical conductivity and EM shielding properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lightweight and flexible electromagnetic shielding materials were designed by selectively localizing multiwall carbon nanotubes (MWNTs) anchored magnetic nanoparticles in melt mixed co-continuous blends of polyvinylidene fluoride (PVDF) and poly(styrene-co-acrylonitrile) (SAN). In order to facilitate better dispersion, the MWNTs were modified using pyrenebutyric acid (PBA) via pi-pi stacking. While one of the two-targeted properties, i.e., high electrical conductivity, was achieved by PBA modified MWNTs, high magnetic loss was accomplished by introducing nickel (NF) or cobalt ferrites (CF). Moreover, the attenuation by absorption can be tuned either by using NF (58% absorption) or CF (64% absorption) in combination with PBA-MWNTs. More interestingly, when CF was anchored on to MWNTs via the pyrene derivative, the minimum reflection loss attained was -55 dB in the Ku band (12-18 GHz) frequency and with a large bandwidth. In addition, the EM waves were blocked mostly by absorption (70%). This study opens new avenues in designing flexible and lightweight microwave absorbers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ESD behavior of metallic carbon nanotubes (CNTs) is explored. Unique TLP I-V characteristics and failure mechanism of carbon shells are discussed. ESD failure in CNTs is attributed to shell burning. It was found that CNT interconnect changes resistance in steps of fundamental quantum resistance (h/2e(2)) after individual shell burning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the role of optical wavelength on the photo induced strain in carbon nanotubes (CNT) is probed using a Fiber Bragg Grating (FBG), upon exposure to infrared (IR) (21 mu epsilon mW(-1)) and visible (9 mu epsilon mW(-1)) radiations. The strain sensitivity in CNT is monitored over a smaller range (10(-3) to 10(-9) epsilon) by exposing to a low optical power varying in the range 10(-3) to 10(-6) W. In addition, the wavelength dependent response and recovery periods of CNT under IR (tau(rise) = 150 ms, tau(fall) = 280 ms) and visible (tau(rise) = 1.07 s, tau(fall) = 1.18 s) radiations are evaluated in detail. This study can be further extended to measure the sensitivity of nano-scale photo induced strains in nano materials and opens avenues to control mechanical actuation using various optical wavelengths.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M. smegmatis cells when grown in three differently metabolized carbon sources. Our results show that carotenoid biosynthesis is enhanced when M. smegmatis is grown in glucose compared to glycerol and acetate. We demonstrate that this difference is most likely due to transcriptional upregulation of the carotenoid biosynthesis operon (crt) mediated by higher levels of the stress-responsive sigma factor SigF. Moreover, we find that increased SigF and carotenoid levels correlate with greater resistance of glucose-grown cells to oxidative stress. Thus, we demonstrate the use of Raman spectroscopy in unraveling unknown aspects of mycobacterial physiology and describe a novel effect of carbon source variation on mycobacteria.