508 resultados para TEMPERATURE RANGE 0065-0273K
Resumo:
Optically clear glasses in the ZnO-Bi2O3-B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz-10 MHz)-independent dielectric characteristics associated with significantly low loss (D = 0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18 +/- 4 ppm A degrees C-1 in the 35-250 A degrees C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.
Resumo:
Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]
Resumo:
A combination of chemical and thermal annealing techniques has been employed to synthesize a rarely reported nanocup structure of Mn doped ZnO with good yield. Nanocup structures are obtained by thermally annealing the powder samples consisting of nanosheets, synthesized chemically at room temperature, isochronally in a furnace at 200-500 degrees C temperature range for 2 h. Strong excitonic absorption in the UV and photoluminescence (PL) emission in UV-visible regions are observed in all the samples at room temperature. The sample obtained at 300 degrees C annealing temperature exhibits strong PL emission in the UV due to near-band-edge emission along with very week defect related emissions in the visible regions. The synthesized samples have been found to be exhibiting stable optical properties for 10 months which proved the unique feature of the presented technique of synthesis of nanocup structures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Thermodynamic properties of Dysprosium rhodite (DyRhO3) are measured in the temperature range from 900 to 1,300 K using a solid-state electrochemical cell incorporating yttria-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of DyRhO3 with O-type perovskite structure from its components binary oxides, Dysprosia with C-rare earth structure and beta-Rh2O3 with orthorhombic structure, can be represented by the equation: Delta G(f(OX))(O) (+/- 182)/J mol(-1) = -52710+3.821(T/K). By using the thermodynamic data for DyRhO3 from experiment and auxiliary data for other phases from the literature, the phase relations in the system Dy-Rh-O are computed. Thermodynamic data for intermetallic phases in the binary system Dy-Rh, required for constructing the chemical potential diagrams, are evaluated using calorimetric data available in the literature for three intermetallics and Miedema's model, consistent with the phase diagram. The results are presented in the form of Gibbs triangle, oxygen potential-composition diagram, and three-dimensional chemical potential diagram at 1,273 K. Temperature-composition diagrams at constant oxygen partial pressures are also developed. The decomposition temperature of DyRhO3 is 1,732 (+/- 2.5) K in pure oxygen and 1,624 (+/- 2.5) K and in air at standard pressure.
Resumo:
Void filling in (I) Bi-x-added Co4Sb12 or (II) Sb/Bi substitution of Co4Sb12-xBix has been investigated for structural and thermoelectric properties evaluation. X-ray powder data Rietveld refinements combined with electron probe microanalyses showed a polycrystalline and practically Bi-free CoSb3 skutterudite phase as the major constituent as well as a secondary Bi phase in the grain boundaries. For series I alloys, the electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature in the range from 450 to 750 K. The electrical conductivity of all the samples increased with increasing temperature, showing a semiconducting nature with smaller values of the Seebeck coefficient for higher Bi fractions. Conduction over the entire temperature range was found to arise from a single p-type carrier. Thermal conductivity showed a reduction with Bi added in all the samples, except for Bi0.75Co4Sb12, and the lowest lattice thermal conductivity was found for a Bi-added fraction of 0.5. The maximum zT value of 0.53 at 632 K is higher than that of Co4Sb12.
Resumo:
For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Thermodynamic properties of GdRhO3 are investigated in the temperature range from 900 to 1300 K by employing a solid-state electrochemical cell, incorporating calcia-stabilized zirconia as the electrolyte. The standard Gibbs free energy of formation of GdRhO3 from component binary oxide Gd2O3 with C-rare earth structure and Rh2O3 with orthorhombic structure can be expressed as; Delta G(f(ox))(o)(+/- 60)/J mol(-1) = -56603 + 3.78(T/K) Based on the thermodynamic information on GdRhO3 from experiment and auxiliary data for binary oxides from the literature and estimated properties of Gd-Rh alloys, phase relations are computed for the system Gd-Rh-O at 1273 K. Gibbs free energies for intermetallic phases in the binary Gd-Rh are evaluated using calorimetric data available in the literature for two compositions and Miedema's model, consistent with the binary phase diagram. Isothermal section of the ternary phase diagram, oxygen potential-composition diagram and a 3-D chemical potential diagram for the system Gd-Rh-O at 1273 K are developed. Phase relations in the ternary Gd-Rh-O are also computed as a function of temperature at constant oxygen partial pressures. The ternary oxide, GdRhO3 decomposes to Gd2O3 with B-rare earth structure, metallic Rh and O-2 at 1759(+/- 2) K in pure O-2 and 1649(+/- 2) K in air at a total pressure P-0 -0.1 MPa. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.
Resumo:
Infrared spectra of solid formamide are reported as a function of temperature. Solid formamide samples were prepared at 30 K and then annealed to higher temperatures (300 K) with infrared transmission spectra being recorded over the entire temperature range. The NH2 vibrations of the formamide molecule were found to be particularly very sensitive to temperature change. The IR spectra revealed a phase change occurring in solid formamide between 155 and 165 K. Spectral changes observed above and below the phase transition may be attributed to a rearrangement between formamide dimers and the formation of polymers is proposed at higher temperatures.
Resumo:
Ingots with compositions CrSi2-x (with 0 < x < 0.1) were synthesized by vacuum arc melting followed by uniaxial hot pressing for densification. This paper reports the temperature and composition dependence of the electrical resistivity, Seebeck coefficient, and thermal conductivity of CrSi2-x samples in the temperature range of 300 K to 800 K. The silicon-deficient samples exhibited substantial reductions in resistivity and Seebeck coefficient over the measured temperature range due to the formation of metallic secondary CrSi phase embedded in the CrSi2 matrix phase. The thermal conductivity was seen to exhibit a U-shaped curve with respect to x, exhibiting a minimum value at the composition of x = 0.04. However, the limit of the homogeneity range of CrSi2 suppresses any further decrease of the lattice thermal conductivity. As a consequence, the maximum figure of merit of ZT = 0.1 is obtained at 650 K for CrSi1.98.
Resumo:
The configuration of hemoglobin in solution and confined inside silica nanotubes has been studied using synchrotron small angle X-ray scattering and electrochemical activity. Confinement inside submicron tubes of silica aid in preventing protein aggregation, which is vividly observed for unconfined protein in solution. The radius of gyration (R-g) and size polydispersity (p) of confined hemoglobin was found to be lower than that in solution. This was also recently demonstrated in case of confined hemoglobin inside layered polymer capsules. The confined hemoglobin displayed a higher thermal stability with Rg and p showing negligible changes in the temperature range 25-75 degrees C. The differences in configuration between the confined and unconfined protein were reflected in their electrochemical activity. Reversible electrochemical response (from cyclic voltammograms) obtained in case of the confined hemoglobin, in contrary to the observance of only a cathodic response for the unconfined protein, gave direct indication of the differences between the residences of the electroactive heme center in a different orientation compared to that in solution state. The confined Hb showed loss of reversibility only at higher temperatures. The electron transfer coefficient (alpha) and electron transfer rate constant (k(s)) were also different, providing additional evidence regarding structural differences between the unconfined and confined states of hemoglobin. Thus, absence of any adverse effects due to confinement of proteins inside the inorganic matrices such as silica nanotubes opens up new prospects for utilizing inorganic matrices as protein ``encapsulators'', as well as sensors at varying temperatures.
Resumo:
The present work demonstrates the synthesis of Cu-10 wt% TiB2 composites with a theoretical density of more than 90% by tailoring the spark plasma sintering (SPS) conditions in the temperature range of 400-700 degrees C. Interestingly, 10 wt% Pb addition to Cu-10 wt% TiB2 lowers the sinter density and the difference in the densification behavior of the investigated compositions was discussed in reference to the current profile recorded during a SPS cycle. The sintering kinetics and phase assemblage were also discussed in reference to surface melting of the constituents prior to bulk melting temperature, temperature dependent wettability of Pb on Cu, diffusion kinetics of Cu as well as the formation of various oxides. An important result is that a high hardness of around 2 GPa and relative density close to 92% qtheoretical was achieved for the Cu-10 wt% TiB2-10 wt% Pb composite, and such a combination has never been achieved before using any conventional processing route.
Resumo:
This study deals with the influence of Er-doping level and thermal annealing on the optical properties of amorphous Ge-Ga-S thin films. Nominal compositions of (GeS2)(75)(Ga2S3)(25) doped with high concentrations of 2.1 and 2.4 mol% Er2S3 (corresponding to 1.2 and 1.4 at% Er, respectively) have been chosen for this work. The results have been related to those obtained for the un-doped samples. The values of the refractive index, the absorption coefficient and optical band gap have been determined from the transmittance data. It has been found that the optical band gap of un-doped and 2.1 mol% Er2S3-doped films slightly increases with annealing temperature, whereas at 2.4 mol% Er2S3-doping level it is decreased. The dependences of the optical parameters on the erbium concentration and effect of annealing in the temperature range of 100-200 degrees C have been evaluated and discussed in relation to possible structural changes.
Resumo:
Thermodynamic properties of Ca7V4O17 are measured for the first time using a solid-state electrochemical cell incorporating single crystal of CaF2 as the electrolyte over the temperature range from (900 to 1175) K. An equimolar mixture of CaO and CaF2 is used as the reference electrode and a mixture of Ca3V2O8, Ca7V4O17 and CaF2 as the measuring electrode. Both the electrodes are placed under flowing oxygen gas at ambient pressure. The standard Gibbs energy change for the reaction: 2Ca(3)V(2)O(8) + CaO -> Ca7V4O17; which is related to the chemical potential of CaO in the two-phase region (Ca3V2O8 + Ca7V4O17) of the pseudo-binary system CaO + V2O5, is obtained from the electromotive force of the cell as: Delta(r)G(o) +/- 127/(J . mol(-1)) = Delta mu(CaO) = -11453 + 8.273(T/K). The derived standard enthalpy of formation of Ca7V4O17 from elements in their normal standard states is ( 8208.97 +/- 8) kJ . mol (1) and its standard entropy is (560.05 +/- 7.5) J . K (1) . mol (1), both at T = 298.15 K. The results indicate that Ca7V4O17 decomposes into Ca3V2O8 and CaO at T = (1384 +/- 3) K.