447 resultados para Solid freeform fabrication


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hitherto unseen rotation of the isopropyl group in the solid state, predicted to be forbidden based on theoretical investigations, is reported. This C-C rotation observed during the temperature dependent single-crystal-to-single-crystal transformation is attributed to the concomitant changes in molecular structure and intermolecular packing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work discusses the findings obtained from simulations of semi solid die filling of a steering knuckle, prior to actual component development using in-house developed rheo pressure die casting system. Die filling capability of A356 Al alloy at semi-solid state has been investigated using commercial software Flow-3Dcast to optimise the pouring temperature of semi-solid slurry into the die cavity, while all other variables such as gating design, die preheat temperature and injection velocity are kept constant based on the prior knowledge obtained from trial numerical simulations and experimentation. Efforts have been made to nullify the essence of costly, time consuming experiments towards obtaining high-quality castings out of the findings obtained from numerical simulations. The optimum pouring temperature identified in the present study is 610 A degrees C, which facilitates smoother slurry flow, minimum surface defect concentration, uniform temperature field and solid fraction distribution within the component cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new monoclinic polymorph, form II (P2(1)/c, Z = 4), has been isolated for 3,4-dimethoxycinnamic acid (DMCA). Its solid-state 2 + 2 photoreaction to the corresponding alpha-truxillic acid is different from that of the first polymorph, the triclinic form I (P (1) over bar, Z = 4) that was reported in 1984. The crystal structures of the two forms are rather different. The two polymorphs also exhibit different photomechanical properties. Form I exhibits photosalient behavior but this effect is absent in form II. These properties can be explained on the basis of the crystal packing in the two forms. The nanoindentation technique is used to shed further insights into these structure-property relationships. A faster photoreaction in form I and a higher yield in form II are rationalized on the basis of the mechanical properties of the individual crystal forms. It is suggested that both Schmidt-type and Kaupp-type topochemistry are applicable for the solid-state trans-cinnamic acid photodimerization reaction. Form I of DMCA is more plastic and seems to react under Kaupp-type conditions with maximum molecular movements. Form II is more brittle, and its interlocked structure seems to favor Schmidt-type topochemistry with minimum molecular movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive numerical investigation on the impingement and spreading of a non-isothermal liquid droplet on a solid substrate with heterogeneous wettability is presented in this work. The time-dependent incompressible Navier-Stokes equations are used to describe the fluid flow in the liquid droplet, whereas the heat transfer in the moving droplet and in the solid substrate is described by the energy equation. The arbitrary Lagrangian-Eulerian (ALE) formulation with finite elements is used to solve the time-dependent incompressible Navier-Stokes equation and the energy equation in the time-dependent moving domain. Moreover, the Marangoni convection is included in the variational form of the Navier-Stokes equations without calculating the partial derivatives of the temperature on the free surface. The heterogeneous wettability is incorporated into the numerical model by defining a space-dependent contact angle. An array of simulations for droplet impingement on a heated solid substrate with circular patterned heterogeneous wettability are presented. The numerical study includes the influence of wettability contrast, pattern diameter, Reynolds number and Weber number on the confinement of the spreading droplet within the inner region, which is more wettable than the outer region. Also, the influence of these parameters on the total heat transfer from the solid substrate to the liquid droplet is examined. We observe that the equilibrium position depends on the wettability contrast and the diameter of the inner surface. Consequently. the heat transfer is more when the wettability contrast is small and/or the diameter of inner region is large. The influence of the Weber number on the total heat transfer is more compared to the Reynolds number, and the total heat transfer increases when the Weber number increases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Eu3+ activated Ce0.5Al0.5O2-delta nanophosphors have been synthesized by the nitrate - citrate gel combustion method. All the compounds crystallized in the cubic fluorite CeO2 structure with space group Fm-3m (No. 225). FESEM revealed the flakes-like morphology. The average particle size was estimated from TEM studies and found to be in the range 15-25 nm. The values were in good agreement with the Scherer's method. In photoluminescence (PL) spectra, the D-5(0) -> F-7(2) (612 nm) transition dominates than other transitions which indicates that the Eu3+ ions occupy a site without inversion center. CIE chromaticity diagram confirmed that these nanophosphors can be useful in the fabrication of red component in white light emitting diodes (WLEDs).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

supporting unsteady heat flow with its ambient-humidity; invokes phase transformation of water-vapour molecule and synthesize a `moving optical-mark' at sample-ambient-interface. Under tailored condition, optical-mark exhibits a characteristic macro-scale translatory motion governed by thermal diffusivity of solid. For various step-temperature inputs via cooling, position-dependent velocities of moving optical-mark are measured at a fixed distance. A new approach is proposed. `Product of velocity of optical-mark and distance' versus `non-dimensional velocity' is plotted. The slope reveals thermal diffusivity of solid at ambient-temperature; preliminary results obtained for Quartz-glass is closely matching with literature. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2g and persisted only for a period of 1s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work explores the potential of semi-solid heat treatment technique by elucidating its effect on the plastic behavior of 304L SS in hot working domain. To accomplish this objective, hot isothermal compression tests on 304L SS specimens with semi-solid heat treatment and conventional annealing heat treatment have been carried out within a temperature range of 1273-1473 K and strain rates ranging from 0.01 to 1 s(-1). The dynamic flow behavior of this steel in its conventional heat-treated condition and semi-solid heat-treated condition has been characterized in terms of strain hardening, temperature softening, strain rate hardening, and dynamic flow softening. Extensive microstructural investigation has been carried out to corroborate the results obtained from the analysis of flow behavior. Detailed analysis of the results demonstrates that semi-solid heat treatment moderates work hardening, strain rate hardening, and temperature sensitivity of 304L SS, which is favorable for hot deformation. The post-deformation hardness values of semi-solid heat-treated steel and conventionally heat-treated steel were found to remain similar despite the pre-deformation heat treatment conditions. The results obtained demonstrate the potential of semi-solid heat treatment as a pre-deformation heat treatment step to effectively reduce the strength of the material to facilitate easier deformation without affecting the post-deformation properties of the steel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic design of landfills requires an understanding of the dynamic properties of municipal solid waste (MSW) and the dynamic site response of landfill waste during seismic events. The dynamic response of the Mavallipura landfill situated in Bangalore, India, is investigated using field measurements, laboratory studies and recorded ground motions from the intraplate region. The dynamic shear modulus values for the MSW were established on the basis of field measurements of shear wave velocities. Cyclic triaxial testing was performed on reconstituted MSW samples and the shear modulus reduction and damping characteristics of MSW were studied. Ten ground motions were selected based on regional seismicity and site response parameters have been obtained considering one-dimensional non-linear analysis in the DEEPSOIL program. The surface spectral response varied from 0.6 to 2g and persisted only for a period of 1s for most of the ground motions. The maximum peak ground acceleration (PGA) obtained was 0.5g and the minimum and maximum amplifications are 1.35 and 4.05. Amplification of the base acceleration was observed at the top surface of the landfill underlined by a composite soil layer and bedrock for all ground motions. Dynamic seismic properties with amplification and site response parameters for MSW landfill in Bangalore, India, are presented in this paper. This study shows that MSW has less shear stiffness and more amplification due to loose filling and damping, which need to be accounted for seismic design of MSW landfills in India.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SU8-based micromechanical structures are widely used as thermal actuators in the development of compliant micromanipulation tools. This paper reports the design, nonlinear thermomechanical analysis, fabrication, and thermal actuation of SU8 actuators. The thermomechanical analysis of the actuator incorporates nonlinear temperature-dependent properties of SU8 polymer to accurately model its thermal response during actuation. The designed SU8 thermal actuators are fabricated using surface micromachining techniques and the electrical interconnects are made to them using flip-chip bonding. The issues due to thermal stress during fabrication are discussed and a novel strategy is proposed to release the thermal stress in the fabricated actuators. Subsequent characterization of the actuator using an optical profilometer reveals excellent thermal response, good repeatability, and low hysteresis. The average deflection is similar to 8.5 mu m for an actuation current of similar to 5 mA. The experimentally obtained deflection profile and the tip deflection at different currents are both shown to be in good agreement with the predictions of the nonlinear thermomechanical model. This underscores the need to consider nonlinearities when modeling the response of SU8 thermal actuators. 2015-0087]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the transition from robust ferromagnetism to a spin- glass state in nanoparticulate La0.7Sr0.3MnO3 through solid solution with BaTiO3. The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin- glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from La0.7Sr0.3MnO3 to the otherwise unoccupied Ti-d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the fabrication of microfluidc-nanofluidic channels on Si incorporated with embedded metallic interconnects. The device aids the study of motion of dispersed particles relative to the fluid under the influence of spatially uniform electric field. Optical lithography in combination with focused ion beam technique was used to fabricate the microfluidic-nanofluidic channels, respectively. Focused ion beam technique was also used for embedding the electrodes in the nanochannel. Gold contact pads were deposited using sputtering. The substrate was finally anodically bonded to a glass substrate.